Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adaptive Finite Element Methods for Fluid Structure Interaction Problems with Applications to Human Phonation
KTH, School of Electrical Engineering and Computer Science (EECS), Computational Science and Technology (CST).ORCID iD: 0000-0002-8577-7817
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work presents a unified framework for numerical solution of Fluid Structure Interaction (FSI) and acoustics problems with focus on human phonation. The Finite Element Method is employed for numerical investigation of partial differential equations that model conservation of momentum and mass. Since the resulting system of equations is very large, an efficient open source high performance implementation is constructed and provided. In order to gain accuracy for the numerical solutions, an adaptive mesh refinement strategy is employed which reduces the computational cost in comparison to a uniform refinement. Adaptive refinement of the mesh relies on computable error indicators which appear as a combination of a computable residual and the solution of a so-called dual problem acting as weights on computed residuals. The first main achievement of this thesis is to apply this strategy to numerical simulations of a benchmark problem for FSI. This FSI model is further extended for contact handling and applied to a realistic vocal folds geometry where the glottic wave formation was captured in the numerical simulations. This is the second achievement in the presented work. The FSI model is further coupled to an acoustics model through an acoustic analogy, for vocal folds with flow induced oscillations for a domain constructed to create the vowel /i/. The comparisons of the obtained pressure signal at specified points with respect to results from literature for the same vowel is reported, which is the final main result presented.

Abstract [sv]

Detta arbete presenterar en enhetlig ram för numerisk lösning av fluid-strukturinteraktion (FSI) och akustikproblem med fokus på det mänskligatalet. En finita elementmetod används för numerisk lösning av de partiella differentialekvationer som beskriver konserveringslagar för moment och massa.Eftersom det resulterande systemet av ekvationer är mycket stort, konstruerasen öppen källkod med hög prestanda. För att få hög noggrannhet i de numeriska lösningarna används en adaptiv nätförfiningsstrategi vilken minskar beräkningskostnaden jämfört med en uniform förfining.Adaptiv förfining av nätet bygger på beräknade felindikatorer som bygger på en kombination av en beräkningsbar residual och lösningen av ett såkallat dualt problem. Den första huvudresultatet av denna avhandling är attutveckla en och validera denna strategi för en FSI-modell i ett benchmarkproblem.Denna FSI-modell utvidgas vidare för att hantera kontaktmekanik, ochanvänds sedan för en realistisk modell av stämbandsstrukturerna där denglottiska vågformationen fångas i de numeriska simuleringarna. Detta är detandra huvudresultatet i det presenterade arbetet.FSI-modellen kopplas också till en akustikmodell genom en akustisk analogi,för modell konstruerad för att skapa vokalen / i /. Den erhållna trycksignaleni ett antal punkter jämförs med resultat från litteraturen, vilket är det slutligahuvudresultatet som presenteras.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018. , p. 48
Series
TRITA-EECS-AVL ; 2018:38
Keywords [en]
Fluid Structure Interaction, Finite Element Method, Contact Modeling, Acoustic Coupling, High Performance Computing
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-227252ISBN: 978-91-7729-764-2 (print)OAI: oai:DiVA.org:kth-227252DiVA, id: diva2:1204520
Public defence
2018-05-23, F3, Sing-Sing, floor 2, KTH Kungliga Tekniska högskolan, Lindstedtsvägen 26, Stockholm, Stockholm, 10:30 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, 308874Swedish Foundation for Strategic Research Swedish Research CouncilEU, European Research Council
Note

QC 20180509

Available from: 2018-05-09 Created: 2018-05-08 Last updated: 2018-05-09Bibliographically approved
List of papers
1. Unicorn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry
Open this publication in new window or tab >>Unicorn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry
Show others...
2013 (English)In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 80, no SI, p. 310-319Article in journal (Refereed) Published
Abstract [en]

We present a framework for adaptive finite element computation of turbulent flow and fluid structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for efficient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project.

Keywords
Unicorn, DOLFIN, FEniCS, Parallel adaptive finite element method, Open source software, Turbulent flow, Fluid structure interaction, Complex geometry, Deforming domain
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:kth:diva-124954 (URN)10.1016/j.compfluid.2012.02.003 (DOI)000320427200036 ()2-s2.0-84885190916 (Scopus ID)
Funder
EU, European Research CouncilSwedish Foundation for Strategic Research Swedish Research CouncilSwedish Energy Agency
Note

QC 20130803

Available from: 2013-08-02 Created: 2013-08-02 Last updated: 2018-05-08Bibliographically approved
2. Framework for adaptive fluid-structure interaction with industrial applications
Open this publication in new window or tab >>Framework for adaptive fluid-structure interaction with industrial applications
2013 (English)In: International Journal of Materials Engineering Innovation, ISSN 1757-2754, Vol. 4, no 2, p. 166-186Article in journal (Refereed) Published
Abstract [en]

We present developments in the Unicorn-HPC framework for unified continuum mechanics, enabling adaptive finite element computation of fluid-structure interaction, and an overview of the larger FEniCS-HPC framework for automated solution of partial diffential equations of which Unicorn-HPC is a part. We formulate the basic model and finite element discretisation method and adaptive algorithms. We test the framework on a 2D model problem consisting of a flexible beam in channel flow, and to illustrate the capabilities of the computational framework, we show two application examples from industry and medicine. We simulate a flexible mixer plate in turbulent flow in an exhaust system where the target output is aeroacoustic quantities. The second example is a self-oscillating vocal fold configuration, where the ultimate goal is to predict how the voice is affected by physiological changes from aerodynamics. Here we give the displacement signal of a point on the folds.

Keywords
Adaptive mesh refinement, Fluid structure interaction, High performance computing
National Category
Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-134185 (URN)10.1504/IJMATEI.2013.054394 (DOI)2-s2.0-84879009510 (Scopus ID)
Note

QC 20131119

Available from: 2013-11-19 Created: 2013-11-19 Last updated: 2018-05-08Bibliographically approved
3. Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem
Open this publication in new window or tab >>Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem
2017 (English)In: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, Vol. 33, no 9, article id e2851Article in journal (Refereed) Published
Abstract [en]

In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion–type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2017
Keywords
adaptive finite element method, benchmark problem, fluid-structure interaction, Benchmarking, Computer programming, Diffusion in liquids, Finite element method, Mesh generation, Transport properties, Adaptive finite element, Adaptive finite element methods, Bench-mark problems, Bio-medical models, Fluid-structure interfaces, Incompressible fluid-structure interaction, Software frameworks, Streamline diffusion, Fluid structure interaction
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:kth:diva-216185 (URN)10.1002/cnm.2851 (DOI)000409217800004 ()2-s2.0-85017639985 (Scopus ID)
Note

QC 20171124

Available from: 2017-11-24 Created: 2017-11-24 Last updated: 2018-05-08Bibliographically approved
4. A 3D full-friction contact model for fluid-structure interaction problems
Open this publication in new window or tab >>A 3D full-friction contact model for fluid-structure interaction problems
(English)Manuscript (preprint) (Other academic)
Keywords
Contact model, fluid-structure interaction, finite element method, Arbitrary Lagrangian-Eulerian method, parallel algorithm
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-215166 (URN)
Note

QC 20171006

Available from: 2017-10-03 Created: 2017-10-03 Last updated: 2018-05-08Bibliographically approved
5. FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics
Open this publication in new window or tab >>FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics
Show others...
2017 (English)In: High-Performance Scientific Computing: Jülich Aachen Research Alliance (JARA) High-Performance Computing Symposium / [ed] Edoardo Di Napoli, Marc-André Hermanns, Hristo Iliev, Andreas Lintermann, Alexander Peyser, Springer, 2017, p. 58-69Conference paper, Published paper (Refereed)
Abstract [en]

We present a framework for coupled multiphysics in computational fluid dynamics, targeting massively parallel systems. Our strategy is based on general problem formulations in the form of partial differential equations and the finite element method, which open for automation, and optimization of a set of fundamental algorithms. We describe these algorithms, including finite element matrix assembly, adaptive mesh refinement and mesh smoothing; and multiphysics coupling methodologies such as unified continuum fluid-structure interaction (FSI), and aeroacoustics by coupled acoustic analogies. The framework is implemented as FEniCS open source software components, optimized for massively parallel computing. Examples of applications are presented, including simulation of aeroacoustic noise generated by an airplane landing gear, simulation of the blood flow in the human heart, and simulation of the human voice organ.

Place, publisher, year, edition, pages
Springer, 2017
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10164
Keywords
FEniCS, Unicorn, Eunison, High-performance computing, Multiphysics, Computational fluid dynamics, Adaptive finite element method
National Category
Computational Mathematics Computer Sciences
Identifiers
urn:nbn:se:kth:diva-202694 (URN)10.1007/978-3-319-53862-4_6 (DOI)2-s2.0-85014945510 (Scopus ID)978-3-319-53861-7 (ISBN)978-3-319-53862-4 (ISBN)
Conference
Jülich Aachen Research Alliance (JARA) High-Performance Computing Symposium
Note

QC 20170314

Available from: 2017-03-02 Created: 2017-03-02 Last updated: 2018-05-08Bibliographically approved
6. A Unified Numerical Simulation of Vowel Production That Comprises Phonation and the Emitted Sound
Open this publication in new window or tab >>A Unified Numerical Simulation of Vowel Production That Comprises Phonation and the Emitted Sound
Show others...
2017 (English)In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2017, The International Speech Communication Association (ISCA), 2017, p. 3492-3496Conference paper, Published paper (Refereed)
Abstract [en]

A unified approach for the numerical simulation of vowels is presented, which accounts for the self-oscillations of the vocal folds including contact, the generation of acoustic waves and their propagation through the vocal tract, and the sound emission outwards the mouth. A monolithic incompressible fluid-structure interaction model is used to simulate the interaction between the glottal jet and the vocal folds, whereas the contact model is addressed by means of a level set application of the Eikonal equation. The coupling with acoustics is done through an acoustic analogy stemming from a simplification of the acoustic perturbation equations. This coupling is one-way in the sense that there is no feedback from the acoustics to the flow and mechanical fields. All the involved equations are solved together at each time step and in a single computational run, using the finite element method (FEM). As an application, the production of vowel [i] has been addressed. Despite the complexity of all physical phenomena to be simulated simultaneously, which requires resorting to massively parallel computing, the formant locations of vowel [i] have been well recovered.

Place, publisher, year, edition, pages
The International Speech Communication Association (ISCA), 2017
Series
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, ISSN 2308-457X ; 2017
Keywords
Numerical voice production, phonation, vocal tract acoustics, fluid-structure interaction, finite element method
National Category
Fluid Mechanics and Acoustics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-219554 (URN)10.21437/Interspeech.2017-1239 (DOI)2-s2.0-85039159138 (Scopus ID)
Conference
18th Annual Conference of the International Speech Communication Association, INTERSPEECH 2017, Stockholm, Sweden, 20 August 2017 through 24 August 2017
Projects
Eunison
Funder
EU, FP7, Seventh Framework Programme, 308874
Note

QC 20171211

Available from: 2017-12-07 Created: 2017-12-07 Last updated: 2018-05-08Bibliographically approved

Open Access in DiVA

fulltext(7865 kB)247 downloads
File information
File name FULLTEXT01.pdfFile size 7865 kBChecksum SHA-512
e9b51d3354b46d2fbaa08d42ce178077fd7c59d590b5880bd97f1496546bb01c74be48762a647bb5af868a24cb9806e895e0cbe49d3da506ff7377b9b362c4a2
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Degirmenci, Niyazi Cem
By organisation
Computational Science and Technology (CST)
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 247 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1595 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf