Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A local target specific quadrature by expansion method for evaluation of layer potentials in 3D
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.). KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
2018 (engelsk)Inngår i: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 364, s. 365-392Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Accurate evaluation of layer potentials is crucial when boundary integral equation methods are used to solve partial differential equations. Quadrature by expansion (QBX) is a recently introduced method that can offer high accuracy for singular and nearly singular integrals, using truncated expansions to locally represent the potential. The QBX method is typically based on a spherical harmonics expansion which when truncated at order p has O(p2) terms. This expansion can equivalently be written with p terms, however paying the price that the expansion coefficients will depend on the evaluation/target point. Based on this observation, we develop a target specific QBX method, and apply it to Laplace's equation on multiply-connected domains. The method is local in that the QBX expansions only involve information from a neighborhood of the target point. An analysis of the truncation error in the QBX expansions is presented, practical parameter choices are discussed and the method is validated and tested on various problems.

sted, utgiver, år, opplag, sider
Academic Press, 2018. Vol. 364, s. 365-392
Emneord [en]
Exterior Dirichlet problem, Integral equations, Layer potentials, Multiply-connected domain, Quadrature by expansion, Spherical harmonics expansions
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-227521DOI: 10.1016/j.jcp.2018.03.006ISI: 000432481000017Scopus ID: 2-s2.0-85044166752OAI: oai:DiVA.org:kth-227521DiVA, id: diva2:1205921
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, KAW2014.0338Göran Gustafsson Foundation for Research in Natural Sciences and MedicineSwedish e‐Science Research Center
Merknad

QC 20180515

Tilgjengelig fra: 2018-05-15 Laget: 2018-05-15 Sist oppdatert: 2018-06-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Tornberg, Anna-Karin

Søk i DiVA

Av forfatter/redaktør
Tornberg, Anna-Karin
Av organisasjonen
I samme tidsskrift
Journal of Computational Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf