Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of slow pyrolysis of various biomass feedstock in a rotary drum using TGA data
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.ORCID iD: 0000-0002-1881-2686
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.ORCID iD: 0000-0001-7995-3151
2018 (English)In: Chemical Engineering and Processing, ISSN 0255-2701, E-ISSN 1873-3204, Vol. 129, p. 95-102Article in journal (Refereed) Published
Abstract [en]

Design and optimization of biomass gasification faces the challenge of feedstock variation. Specifically, design calculations require kinetic rate expressions for the given feedstock, whose rigorous determination is demanding and often exceeds available recourses in an early development stage. In this work, we model the slow pyrolysis of biomass for the production of biochar. The aim is to predict the conversion of raw biomass to biochar as a function of the process conditions. Here, we will show that TGA data processed with an isoconversional method is enough to obtain an effective rate expression which allows for predicting the behavior of the biomass at an arbitrary temperature evolution. Such rate expressions can then be used in the process model to simulate conversion of raw biomass to biochar. To illustrate the feasibility of this approach we consider four vastly different biomass, namely spruce wood, pulp, lignin and xylan–lignin, undergoing slow pyrolysis in an indirectly heated rotary kiln reactor. The results of our modeling are compared to experimental data obtained from a 500 kW pilot plant pyrolyzer and to a more detailed process model.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 129, p. 95-102
Keywords [en]
Biomass pyrolysis, Isoconversional, Process model, Rotary drum
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-228722DOI: 10.1016/j.cep.2018.05.002ISI: 000435059000012Scopus ID: 2-s2.0-85047165839OAI: oai:DiVA.org:kth-228722DiVA, id: diva2:1210996
Funder
Swedish Energy Agency
Note

QC 20180530

Available from: 2018-05-30 Created: 2018-05-30 Last updated: 2019-10-29Bibliographically approved
In thesis
1. Modeling in Biomass Harvesting, Biomass Pyrolysis and Producer Gas Cleaning
Open this publication in new window or tab >>Modeling in Biomass Harvesting, Biomass Pyrolysis and Producer Gas Cleaning
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biomass is a viable alternative in order to mitigate the environmental effectscaused by the aggressive use of fossil feedstock during the last century.This thesis builds around the idea of a biofuel production process that iscomprised of biomass production, biomass gasication, gas cleaning andfuel production. Biomass production includes microalgae synthesis followedby harvesting to supply microalgae to the gasication process. In the gasi-cation process, the prepared microalgae is dried, pyrolyzed and gasiedto obtain a producer gas containing syngas and impurities. The producergas is cleaned from the impurities and fed to a fuel production unit, e.g. amethanation process.This thesis investigates three distinct aspects related to this processscheme, namely the occulation of microalgae as part of harvesting, biomasspyrolysis as a part of gasication, and sulfur removal from the producer gasas a part of gas cleaning.The investigation of occulation focuses on secondary phenomena thataccompany the aggregation and breakup of the suspended particles, namelyrestructuring, decay of oc strength and settling. For the study of theconsidered phenomena, a population balance model is developed.Slow pyrolysis of biomass is studied on both the reactor scale and thepellet scale. A model for a rotary drum reactor, using principles of isoconversionalanalysis, is developed for the study of dierent biomass feedstock.The proposed model allows for deriving a preliminary reactor design withminimal experimental input data. A one-dimensional nite volume schemeis developed for the investigation of pyrolysis on the pellet scale. The proposedscheme accounts for convective and diusive heat and mass transfer,and is tested against analytical solutions and commercial software packages.Sulfur removal by metal oxides in a packed bed is studied on both thesystem level and the process level. Criteria for the selection of metal oxidesand the design of packed bed units are derived. A detailed analysis isundertaken to study the reaction of H2S with ZnO in a packed bed, wherethe nano-particles of ZnO experience void formation and outward growth.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 80
Series
TRITA-CBH-FOU ; 2019:65
Keywords
PBE modeling of flocculation; Pyrolysis in Rotary Kilns; Pellet Pyrolysis; Gas Cleaning; Desulfurization.
National Category
Chemical Process Engineering
Identifiers
urn:nbn:se:kth:diva-263085 (URN)978-91-7873-367-5 (ISBN)
Public defence
2019-11-28, Kollegiesalen, Brinellv. 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2019-10-29

Available from: 2019-10-29 Created: 2019-10-29 Last updated: 2019-11-06Bibliographically approved
2.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sadegh-Vaziri, RamiarBäbler, Matthäus

Search in DiVA

By author/editor
Sadegh-Vaziri, RamiarBäbler, Matthäus
By organisation
Chemical Engineering
In the same journal
Chemical Engineering and Processing
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 146 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf