Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learned Primal-Dual Reconstruction
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta Instrument AB, Stockholm, Sweden.ORCID-id: 0000-0001-9928-3407
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).ORCID-id: 0000-0002-1118-6483
2018 (engelsk)Inngår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 37, nr 6, s. 1322-1332Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and it does not depend on any initial reconstruction such as filtered back-projection (FBP). We compare performance of the proposed method on low dose computed tomography reconstruction against FBP, total variation (TV), and deep learning based post-processing of FBP. For the Shepp-Logan phantom we obtain >6 dB peak signal to noise ratio improvement against all compared methods. For human phantoms the corresponding improvement is 6.6 dB over TV and 2.2 dB over learned post-processing along with a substantial improvement in the structural similarity index. Finally, our algorithm involves only ten forward-back-projection computations, making the method feasible for time critical clinical applications.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2018. Vol. 37, nr 6, s. 1322-1332
Emneord [en]
Inverse problems, tomography, deep learning, primal-dual, optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-231206DOI: 10.1109/TMI.2018.2799231ISI: 000434302700004PubMedID: 29870362Scopus ID: 2-s2.0-85041342868OAI: oai:DiVA.org:kth-231206DiVA, id: diva2:1228991
Merknad

QC 20180629

Tilgjengelig fra: 2018-06-29 Laget: 2018-06-29 Sist oppdatert: 2018-06-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Adler, JonasÖktem, Ozan

Søk i DiVA

Av forfatter/redaktør
Adler, JonasÖktem, Ozan
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Medical Imaging

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 577 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf