kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Flexibility of Thermostatically Controlled Loads as a Function of Price Notice Time
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. (IRES)ORCID iD: 0000-0003-0685-0199
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. (IRES)ORCID iD: 0000-0002-8189-2420
University of Michigan Ann Arbor, MI 48109 USA. (Department of Electrical Engineering & Computer Science)
2018 (English)In: 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), IEEE conference proceedings, 2018Conference paper, Published paper (Refereed)
Abstract [en]

Due to increased use of variable renewable energy sources, more capacity for balancing and ancillary services (AS) is required. Non-generating resources such as thermostatically controlled loads (TCLs) can arbitrage energy prices and provide AS due to their thermal energy storage capacity. This paper explores the impact of energy/AS price notice time, i.e. the time between when the price is announced and when it takes effect, on the TCL energy consumption and AS capacity bids, and quantifies trade-offs between notice time and flexibility. We first optimize the energy consumption and AS capacity offers at a given notice time, varied from 24 hours ahead to real-time. We then introduce uncertainty in TCL availability, formulate the stochastic optimization problem, and evaluate how the trade-offs change. We find that price notice time impacts TCL profits, but does not significantly affect the total AS capacity offered over the day. However, AS capacity offers are impacted by uncertainty, which is likely to increase with notice time.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2018.
Keywords [en]
ancillary services, demand response, electricity prices, notice time, thermostatically controlled loads
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-231946DOI: 10.23919/PSCC.2018.8442737ISI: 000447282400092Scopus ID: 2-s2.0-85054025579ISBN: 978-1-910963-10-4 (electronic)ISBN: 978-1-5386-1583-6 (print)OAI: oai:DiVA.org:kth-231946DiVA, id: diva2:1231139
Conference
2018 Power Systems Computation Conference (PSCC 2018), June 11-15, 2018, Dublin, Ireland
Funder
Swedish Energy Agency, 76178
Note

QC 20180717. QC 20191203

Available from: 2018-07-05 Created: 2018-07-05 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Demand Flexibility for the Simultaneous Provision of Multiple Services: Tapping the Potential of Controllable Electric Loads for Frequency Reserves and Energy Arbitrage
Open this publication in new window or tab >>Demand Flexibility for the Simultaneous Provision of Multiple Services: Tapping the Potential of Controllable Electric Loads for Frequency Reserves and Energy Arbitrage
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Power systems with increasing shares of renewable energy sources require sufficient flexibility sources. One source of flexibility for future power systems is constituted by flexible electric loads. The concept of demand response captures the utilization of demand side flexibility to provide services to the power system. To efficiently exploit demand side flexibility, the need for, the potential of, and means to provide flexibility need to be quantified. This thesis provides an estimate of the need for flexibility, the potential of demand side flexibility, and, above all, the means of tapping the flexibility from controllable electric loads.

For a demand response provider, the most economic means of providing flexibility in wholesale electricity markets is to participate in several markets simultaneously and thereby provide multiple services. With a focus on the Nordic electricity markets, the simultaneous provision of energy arbitrage and frequency reserves poses as the most economic market portfolio for a demand response provider with storage type assets.Specifically, the methods developed in this thesis model a risk-averse demand response provider that aims to maximize its profit on the day-ahead by placing bids on the energy and frequency reserve markets.

The operational business of a demand response provider is illustrated by stochastic optimization of day-ahead bids under uncertainty from prices, temperatures, behavior, and model error.A general virtual battery model for simultaneous bidding in multiple day-ahead markets is developed for three applications; Thermostatically controlled loads (TCL), electric vehicles (EV), and a pulp and paper mill (PPM). The models can be used to assess the flexibility potential that a demand response provider can supply in a market based procurement of energy and reserves.Through application of the models to power system, price, temperature, and load data, the power and energy flexibility of the three studied load types are quantified.

This thesis contributes to the field of demand response research by providing decision support tools for demand response providers that participate in energy and frequency reserve (FCR-N) markets.The main focus of the developed algorithms is to facilitate optimal day-ahead bids for a risk-averse demand response provider under various sources of uncertainty. Additionally, the sensitivity to market timing, such as lead time and contract period, is investigated.

A significant potential of approximately 2.0 GW FCR-N capacity and 15.0 GWh energy flexibility is found in the Swedish power system, that can be exploited given the necessary communication infrastructure. The amount of flexibility, as well as the profitability of a demand response provider, is highest with short lead times and contract periods.

Abstract [sv]

Ett elkraftsystem med en ökande andel förnybara energikällor kräver tillräckligt med flexibilitet. En typ av flexibilit för framtidens elkraftsystem utgörs av flexibel elförbrukning. Begreppet efterfrågesvar beskriver användningen av efterfrågeflexibilitet för att tillhandahålla tjänster till elkraftsystemet. För att effektivt utnyttja flexibiliteten på efterfrågesidan måste behovet av, potentialen för och metoder för att tillhandahålla flexibilitet kvantifieras. Denna avhandling ger en uppskattning av behovet av flexibilitet, potentialen för efterfrågeflexibilitet och framför allt metoder för att använda flexibiliteten från styrbara elförbrukningar.

För en leverantör av efterfrågesvar är det mest ekonomiska sättet att tillhandahålla flexibilitet på elmarknaderna att delta på flera marknader samtidigt och därmed tillhandahålla multitjänster. Med fokus på de nordiska elmarknaderna utgör det samtidiga tillhandahållandet av energiarbitrage och frekvensreserver den mest ekonomiska marknadsportföljen för en efterfrågesvarleverantör med tillgångar av lagringstyp. Specifikt är de metoder som utvecklats i denna avhandling tillämpliga för en riskobenägen leverantör av efterfrågesvar som syftar till att maximera sin vinst för nästa dag genom att lägga bud på energi- och frekvensreservmarknaderna.

Den operativa verksamheten hos en leverantör av efterfrågesvar beskrivs genom stokastisk optimering av buden under osäkerhet från priser, temperaturer, beteenden och modellfel. En generell virtuell batterimodell för samtidig budgivning på flera marknader i dag framåt är utvecklad för tre tillämpningar; Termostatstyrda laster (TCL), elektriska fordon (EV) och ett massa- och pappersbruk (PPM). Modellerna kan användas för att utvärdera flexibilitetspotentialen som en leverantör av efterfrågesvar kan tillhandahålla i en marknadsbaserad upphandling av energi och reserver. Genom tillämpning av modellerna på elkraftsystem, pris, temperatur och lastdata kvantifieras potentialen och energiflexibiliteten hos de tre studerade lasttyperna.

Denna avhandling bidrar till området efterfrågesvarforskning genom att tillhandahålla beslutsstödverktyg för leverantörer av efterfrågesvar som deltar i energi- och frekvensreservmarknader (FCR-N). Huvudfokus för de utvecklade algoritmerna är att möjliggöra optimala framtida bud för en riskobenägen leverantör av efterfrågesvar under olika osäkerhetskällor. Dessutom undersöks inverkan av marknadsparametrar , såsom ledtid och avtalsperiod.

En betydande potential på cirka 2,0 GW FCR-N effektflexibilitet och 15,0 GWh energiflexibilitet finns i det svenska kraftsystemet, som kan utnyttjas förutsatt en tillgång på nödvändig kommunikationsinfrastruktur. Mängden flexibilitet, liksom lönsamheten hos en leverantör av efterfrågesvar, är högst vid kort ledtid och avtalsperiod.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2020. p. 82
Series
TRITA-EECS-AVL ; TRITA-EECS-AVL-2020:35
Keywords
aggregator, chance constrained optimisation, demand response, de-mand response provider, demand side management, frequency reserves, load control, stochastic optimization, aggregator, riskbegränsad optimering, efterfrågestyrning, leverantör av efterfrågesvar, efterfrågeflexibilitet, frekvensreserver, laststyrning, stokastisk optimering.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-279070 (URN)978-91-7873-569-3 (ISBN)
Public defence
2020-09-08, Kollegiesalen eller via zoom: https://kth-se.zoom.us/webinar/register/WN_3mOiNLURQzao2UdGwTNb2A, Brinellvägen 8,100 28 Stockholm, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 76178
Note

QC 20200814

Available from: 2020-08-14 Created: 2020-08-13 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(1151 kB)367 downloads
File information
File name FULLTEXT01.pdfFile size 1151 kBChecksum SHA-512
3b1578708a47f1bf6e3f937a6788decdfc6d82b436d36156aaf8bb83caf57dc262f6ecedfa1331dfe43db336607e568feebfab7a13df0304085691c04b195bf2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusConference websiteConference proceedings

Authority records

Herre, LarsSöder, Lennart

Search in DiVA

By author/editor
Herre, LarsSöder, Lennart
By organisation
Electric Power and Energy Systems
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 367 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 714 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf