Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Latency-Energy Tradeoff based on Channel Scheduling and Repetitions in NB-IoT Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).ORCID iD: 0000-0003-0125-2202
KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).
Aalborg University.
Aalborg University.
2018 (English)In: 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018, article id 8648024Conference paper, Published paper (Refereed)
Abstract [en]

Narrowband Internet of Things (NB-IoT) is the latest IoT connectivity solution presented by the 3rd generation partnership project (3GPP). NB-IoT introduces coverage classes and offers a significant link budget improvement by allowing repeated transmissions by nodes that experience high path loss. However, those repetitions necessarily increase the energy consumption and the latency in the whole NB-IoT system. The extent to which the whole system is affected depends on the scheduling of the uplink and downlink channels. We address this question, not treated previously, by developing a tractable model of NB-IoT access protocol operation, comprising message exchanges in random-access, control, and data channels, both in the uplink and downlink The model is then used to analyze the impact of channel scheduling as well as the interaction of coexisting coverage classes, through derivation of the expected latency and battery lifetime for each coverage class. These results are subsequently employed in investigation of latency-energy tradeoff in NB-IoT channel scheduling as well as determining the optimized operation points. Simulations results show validity of the analysis and confirm that channel scheduling and coexistence of coverage classes significantly affect latency and battery lifetime performance of NB-IoT devices.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018. article id 8648024
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keywords [en]
NB-IoT, Latency energy tradeoff, repetition, multiplexing
Keywords [fa]
انرژی تاخیر، اینترنت اشیاء باند باریک، تکرار سیگنال
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-232211DOI: 10.1109/GLOCOM.2018.8648024ISI: 000465774305078Scopus ID: 2-s2.0-85063419292ISBN: 9781538647271 (print)OAI: oai:DiVA.org:kth-232211DiVA, id: diva2:1233076
Conference
2018 IEEE Global Communications Conference, GLOBECOM 2018; Abu Dhabi National Exhibition Centre (ADNEC)Abu Dhabi; United Arab Emirates; 9 December 2018 through 13 December 2018
Note

QC 20180716

Available from: 2018-07-15 Created: 2018-07-15 Last updated: 2019-06-12Bibliographically approved
In thesis
1. Serving IoT Communications over Cellular Networks: Challenges and Solutions in Radio Resource Management for Massive and Critical IoT Communications
Open this publication in new window or tab >>Serving IoT Communications over Cellular Networks: Challenges and Solutions in Radio Resource Management for Massive and Critical IoT Communications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Internet of Things (IoT) communications refer to the interconnections of smart devices, with reduced human intervention, which enable them to participate more actively in everyday life. It is expected that introduction of a scalable, energy efficient, and reliable IoT connectivity solution can bring enormous benefits to the society, especially in healthcare, wellbeing, and smart homes and industries. In the last two decades, there have been efforts in academia and industry to enable IoT connectivity over the legacy communications infrastructure. In recent years, it is becoming more and more clear that the characteristics and requirements of the IoT traffic are way different from the legacy traffic originating from existing communications services like voice and web surfing, and hence, IoT-specific communications systems and protocols have received profound attention. Until now, several revolutionary solutions, including cellular narrowband-IoT, SigFox, and LoRaWAN, have been proposed/implemented. As each of these solutions focuses on a subset of performance indicators at the cost of sacrificing the others, there is still lack of a dominant player in the market capable of delivering scalable, energy efficient, and reliable IoT connectivity. The present work is devoted to characterizing state-of-the-art technologies for enabling large-scale IoT connectivity, their limitations, and our contributions in performance assessment and enhancement for them. Especially, we focus on grant-free radio access and investigate its applications in supporting massive and critical IoT communications. The main contributions presented in this work include (a) developing an analytical framework for energy/latency/reliability assessment of IoT communications over grant-based and grant-free systems; (b) developing advanced RRM techniques for energy and spectrum efficient serving of massive and critical IoT communications, respectively; and (c) developing advanced data transmission/reception protocols for grant-free IoT networks. The performance evaluation results indicate that supporting IoT devices with stringent energy/delay constraints over limited radio resources calls for aggressive technologies breaking the barrier of the legacy interference-free orthogonal communications.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 91
Series
TRITA-EECS-AVL ; 2018:73
Keywords
5G, Battery lifetime, Grant-based and grant-free access, Massive and critical IoT communications, Radio resource manage
National Category
Engineering and Technology
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-238678 (URN)978-91-7729-973-8 (ISBN)
Public defence
2018-11-23, Sal C, Electrum, Kistagången 16, Kista., Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20181107

Available from: 2018-11-07 Created: 2018-11-07 Last updated: 2018-11-07Bibliographically approved

Open Access in DiVA

fulltext(719 kB)134 downloads
File information
File name FULLTEXT01.pdfFile size 719 kBChecksum SHA-512
1414ee5f39faa25f1ac2890b6fb4fd80d0d2ae103437f839696193d0cc8a4a083b78fcf48cf5acbfb33772e42ae97af87a55b83b40b8c465b42f3f1fffb0232a
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Azari, AminMiao, Guowang

Search in DiVA

By author/editor
Azari, AminMiao, Guowang
By organisation
Radio Systems Laboratory (RS Lab)
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 134 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 366 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf