Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the Effect of Control-Point Spacing on the Multisolution Phenomenon in the P3P Problem
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap. KTH, Skolan för teknikvetenskap (SCI), Mekanik.ORCID-id: 0000-0002-8318-1251
Univ Sao Paulo Sao Carlos, Inst Math & Comp Sci, Dept Appl Math & Stat, POB 668, BR-13560970 Sao Carlos, SP, Brazil..
2018 (engelsk)Inngår i: Mathematical problems in engineering (Print), ISSN 1024-123X, E-ISSN 1563-5147, artikkel-id 5932508Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The perspective 3-point (P3P) problem, also known as pose estimation, has its origins in camera calibration and is of importance in many fields: for example, computer animation, automation, image analysis, and robotics. One possibility is to formulate it mathematically in terms of finding the solution to a quartic equation. However, there is yet no quantitative knowledge as to how control-point spacing affects the solution structure-in particular, the multisolution phenomenon. Here, we consider this problem through an algebraic analysis of the quartic's coefficients and its discriminant and find that there are significant variations in the likelihood of two or four solutions, depending on how the spacing is chosen. The analysis indicates that although it is never possible to remove the occurrence of the four-solution case completely, it could be possible to choose spacings that would maximize the occurrence of two real solutions. Moreover, control-point spacing is found to impact significantly on the reality conditions for the solution of the quartic equation.

sted, utgiver, år, opplag, sider
HINDAWI LTD , 2018. artikkel-id 5932508
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-232431DOI: 10.1155/2018/5932508ISI: 000437082800001Scopus ID: 2-s2.0-85053194951OAI: oai:DiVA.org:kth-232431DiVA, id: diva2:1234456
Merknad

QC 20180724

Tilgjengelig fra: 2018-07-24 Laget: 2018-07-24 Sist oppdatert: 2018-10-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vynnycky, Michael

Søk i DiVA

Av forfatter/redaktør
Vynnycky, Michael
Av organisasjonen
I samme tidsskrift
Mathematical problems in engineering (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf