Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Manufacturing of Graphene Membranes with Suspended Silicon Proof Masses forMEMS and NEMS
KTH, School of Electrical Engineering and Computer Science (EECS). (Micro and Nanosystems)ORCID iD: 0000-0002-8811-1615
KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits. (Department of Integrated Devices and Circuits)ORCID iD: 0000-0003-4637-8001
(Scania Technical Centre)
Faculty of Electrical Engineering and Information Technology, RWTH Aachen University.
Show others and affiliations
(English)In: Article in journal (Refereed) Submitted
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-232551OAI: oai:DiVA.org:kth-232551DiVA, id: diva2:1235476
Note

QC 20180814

Available from: 2018-07-25 Created: 2018-07-25 Last updated: 2018-08-14Bibliographically approved
In thesis
1. Integration of graphene into MEMS and NEMS for sensing applications
Open this publication in new window or tab >>Integration of graphene into MEMS and NEMS for sensing applications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents a novel approach to integrate chemical vapor deposition (CVD) graphene into silicon micro- and nanoelectromechanical systems (MEMS/NEMS) to fabricate different graphene based MEMS/NEMS structures and explore mechanical properties of graphene as well as their applications such as acceleration sensing, humidity sensing and CO2 sensing. The thesis also presents a novel method of characterization of CVD graphene grain boundary based defects.

    The first section of this thesis presents a robust, scalable, flexible route to integrate double-layer graphene membranes to a silicon substrate so that large silicon masses are suspended by graphene membranes.

    In the second section, doubly-clamped suspended graphene beams with attached silicon masses are fabricated and used as model systems for studying the mechanical properties of graphene and transducer elements for NEMS resonators and extremely small accelerometers, occupying die areas that are at least two orders of magnitude smaller than the die areas occupied by the most compact state-of-the-art silicon accelerometers. An averaged Young’s modulus of double-layer graphene of ~0.22 TPa and non-negligible built-in stresses of the order of 200-400 MPa in the suspended graphene beams are extracted, using analytical and FEA models. In addition, fully clamped suspended graphene membranes with attached proof masses are also realized, which are used for acceleration sensing.

In the third section, CO2 sensing of single-layer graphene and the cross-sensitivity between CO2 and humidity are shown. The cross-sensitivity of CO2 is negligible at typical CO2 concentrations present in air. The properties of double-layer graphene when exposed to humidity and CO2 have been characterized, with similarly fast response and recovery behaviour but weak resistance responses, compared to single layer graphene.

In the fourth section, a fast and simple method for large-area visualization of grain boundaries in CVD graphene transferred to a SiO2 surface is demonstrated. The method only requires vapor hydrofluoric acid (VHF)-etching and optical microscope inspection and therefore could be useful to speed up the process of developing large-scale high quality graphene synthesis, and can also be used for analysis of the influence of grain boundaries on the properties of emerging graphene devices that utilize CVD graphene patches placed on a SiO2 substrate.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 87
Series
TRITA-EECS-AVL ; 2018:43
Keywords
Micro-electromechanical systems (MEMS), Nano-electromechanical systems (NEMS), heterogeneous 3D integration, Graphene, single-layer graphene, double-layer graphene, bilayer graphene, chemical vapor deposition (CVD), suspended graphene beams, suspended graphene membranes, doubly clamped, fully clamped, silicon on insulator (SOI), vapor hydrofluoric acid (VHF), Young’s modulus, built-in stress, built-in tension, piezoresistivity, gauge factor, accelerometer, resonators, electromechanical sensing, advanced transducers, humidity, gas sensing, sensitivity, CO2 sensing, graphene grain boundary, line defects, optical microscopy, wire bonding
National Category
Nano Technology Engineering and Technology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-232557 (URN)978-91-7729-803-8 (ISBN)
Public defence
2018-08-24, Sal F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180726

Available from: 2018-07-26 Created: 2018-07-25 Last updated: 2018-07-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Smith, Anderson DavidSchröder, StephanÖstling, Mikael

Search in DiVA

By author/editor
Fan, XugeSmith, Anderson DavidSchröder, StephanÖstling, MikaelLemme, MaxNiklaus, Frank
By organisation
School of Electrical Engineering and Computer Science (EECS)Integrated devices and circuits
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 391 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf