Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fabrication of Spin-Coated Ti/TiHx/Ni-Sb-SnO2 Electrode: Stability and Electrocatalytic Activity
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
Mid Sweden Univ, FSCN Mat Phys, Dept Nat Sci, SE-85170 Sundsvall, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-5816-2924
2018 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 165, no 9, p. H568-H574Article in journal (Refereed) Published
Abstract [en]

A novel three-layer anode having the composition Ti/TiHx/Ni-Sb-SnO2 (Ti/TiHx/NATO) was successfully prepared by a spin-coating and pyrolysis process aiming at a long service lifetime and good electrocatalytic properties for ozone formation. The TiHx as an interlayer was produced by electrochemical cathodic reduction of a coated layer of the TiOx on the titanium substrate. Spin coating and thermal decomposition were used to deposit the Sn-Sb-Ni precursor on the surface of the prepared Ti/TiHx electrode. Cyclic and linear scanning voltammetry, Raman spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to reveal the electrode performance and morphology. Results show that the onset potential for the oxygen evolution reaction (OER) of Ti/TiHx /NATO is higher than for Ti/NATO. They also indicate that the service lifetime of the Ti/TiHx/NATO is twice as long as the Ti/NATO at a current density of 50 mA.cm(-2) at room temperature. Electrochemical ozone generation and degradation of the methylene blue were investigated to confirm selectivity and activity of the electrodes. After 5 min electrolysis, a current efficiency for ozone generation of 56% was obtained the electrode with TiHx while 38% was obtained on Ti/NATO under same conditions. The results also confirm that the Ti/TiH x /NATO has a higher kinetic rate constant and decolorization efficiency for removal of the methylene blue compare to the Ti/NATO. The rate constant for the pseudo-first ordered reaction of methylene blue degradation showed high values of 350 x 10(-3) min(-1) for Ti/NATO and 440 x 10(-3) min(-1) for Ti/TiHx/NATO. 

Place, publisher, year, edition, pages
ELECTROCHEMICAL SOC INC , 2018. Vol. 165, no 9, p. H568-H574
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-233616DOI: 10.1149/2.1171809jesISI: 000440924800150Scopus ID: 2-s2.0-85049351439OAI: oai:DiVA.org:kth-233616DiVA, id: diva2:1241959
Note

QC 20180827

Available from: 2018-08-27 Created: 2018-08-27 Last updated: 2018-08-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Cornell, Ann M.

Search in DiVA

By author/editor
Abbasi, M.Cornell, Ann M.
By organisation
Applied Electrochemistry
In the same journal
Journal of the Electrochemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 578 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf