Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Removal of micropollutants and nutrients in household wastewater using organic and inorganic sorbents
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.ORCID iD: 0000-0001-6617-4001
(English)In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986Article in journal, Editorial material (Refereed) In press
Abstract [en]

The efficiency of five organic and five inorganic sorbents in removing 19 organic micropollutants (MPs), phosphorus, nitrogen, and dissolved organic carbon (DOC) was tested in a two-week column experiment using household wastewater spiked with pharmaceuticals (n = 6), biocides/pesticides (n = 4), organophosphates (n = 3), a fragrance, a UV-stablizer, a food additive,a rubber additive, a plasticizer and a surfactant. Two types of granular activated carbon (GAC), two types of lignite, a pine bark product, and five mineral-based sorbents were tested. All the organic sorbents except pine bark achieved better removal efficiencies of DOC (on average, 70 ± 27%) and MPs (93 ± 11%) than the inorganic materials (DOC: 44 ± 7% and MPs: 66 ± 38%). However, the organic sorbents (i.e. GAC and xyloid lignite) removed less phosphorus (46 ± 18%), while sorbents with a high calcium or iron content (i.e. Polonite® and lignite) generally removed phosphorus more efficiently (93 ± 3%). Ammonium-nitrogen was well removed by sorbents with a pH between 7 and 9, with an average removal of 87%, whereas lignite (pH 4) showed the lowest removal efficiency (50%). Some MPs were well removed by all sorbents (≥97%) including biocides (hexachlorobenzene, triclosan and terbutryn), organophosphates (tributylphosphate, tris-(1,3-dichloro-2-propyl)phosphate and triphenylphosphate) and one fragrance (galaxolide). The pesticide 2,6-dichlorobenzamide and the pharmaceutical diclofenac were poorly removed by the pine bark and inorganic sorbents (on average, 4%), while organic sorbents achieved high removal of these chemicals (87%).

Keywords [en]
Micropollutants (MPs); Synthetic substances; Sorbents; On-site sewage facilities (OSSFs)
National Category
Water Engineering
Identifiers
URN: urn:nbn:se:kth:diva-234660DOI: 10.5004/dwt.2018.22836ISI: 000446574200010Scopus ID: 2-s2.0-85054474332OAI: oai:DiVA.org:kth-234660DiVA, id: diva2:1246483
Funder
Swedish Research Council Formas, 216-2012-2101
Note

QC 20180907

Available from: 2018-09-07 Created: 2018-09-07 Last updated: 2018-10-23Bibliographically approved
In thesis
1. An add-on filter technique to improve micropollutant removal and water quality in on-site sewage treatment facilities
Open this publication in new window or tab >>An add-on filter technique to improve micropollutant removal and water quality in on-site sewage treatment facilities
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Onsite sewage treatment facilities (OSSFs) in Sweden currently release significant amounts of nitrogen (N) and phosphorus (P) into groundwater or/and receiving water bodies. Micropollutants (MPs) have been found in both surface water and groundwater, indicating insufficient removal of MPs by OSSFs. Two laboratory-scale column experiments, followed by a field experiment, were performed to study removal of a set of organic MPs by organic and inorganic sorbents. The set covered different product categories, e.g. an artificial sweetener, organophosphates, parabens, personal care products, perfluoroalkyl substances (PFASs), pesticides, pharmaceuticals, a plasticiser, a polymer impurity, stimulants and surfactants. An experiment using five organic and five inorganic sorbents showed that coal-based organic sorbents performed better than natural fibre and inorganic sorbents in removal of MPs, with 20% higher removal efficiency on average. Five sorbents were selected for a long-term column experiment examining 31 MPs. Physical properties and chemical structure of the sorbents, namely pore structure and surface functional groups, were found to be correlated to their capacity for removal of MPs. Molecular weight, solvent-accessible area, octanol-water partition coefficient and distribution-coefficient of PFASs were found to be strongly positively correlated with their removal by some sorbents. Organic sorbents with good performance in removal of MPs and a conventional sand bed showed limited ability to remove P, while calcium-rich sorbents increased P removal greatly. Two sorbents, granulated activated carbon (GAC) and xyloid lignite (Xylit), were tested for 24 weeks in an add-on filter for effluent from a soil treatment system and found to significantly improve removal of MPs. A replaceable add-on unit for removal of MPs from OSSF effluent is recommended and should contain an organic sorbent such as GAC or Xylit.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 54
Series
TRITA-ABE-DLT ; 1821
Keywords
Micropollutant, on-site sewage facilities, physicochemical properties, pore structure, sorbents, surface functional group
National Category
Water Engineering
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-234314 (URN)978-91-7729-936-3 (ISBN)
Public defence
2018-09-28, D3, Lindstedtsvägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 216-2012-2101
Note

QC 20180907

Available from: 2018-09-07 Created: 2018-09-06 Last updated: 2018-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Zhang, WenRenman, Gunno

Search in DiVA

By author/editor
Zhang, WenRenman, Gunno
By organisation
Sustainable development, Environmental science and EngineeringWater and Environmental Engineering
In the same journal
Desalination and Water Treatment
Water Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 347 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf