Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamics of Three-Dimensional Turbulent Wall Plumes and Implications for Estimates of Submarine Glacier Melting
Univ Helsinki, Inst Atmospher & Earth Syst Res, Helsinki, Finland.;Univ Helsinki, Dept Phys, Fac Sci, Helsinki, Finland..
Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA..
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. Royal Inst Technol, Linne FLOW Ctr, Stockholm, Sweden.;Royal Inst Technol, Swedish E Sci Res Ctr, Dept Mech, Stockholm, Sweden..ORCID iD: 0000-0002-4346-4732
2018 (English)In: Journal of Physical Oceanography, ISSN 0022-3670, E-ISSN 1520-0485, Vol. 48, no 9, p. 1941-1950Article in journal (Refereed) Published
Abstract [en]

Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.

Place, publisher, year, edition, pages
American Meteorological Society, 2018. Vol. 48, no 9, p. 1941-1950
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-234574DOI: 10.1175/JPO-D-17-0194.1ISI: 000442729400001OAI: oai:DiVA.org:kth-234574DiVA, id: diva2:1248766
Note

QC 20180917

Available from: 2018-09-17 Created: 2018-09-17 Last updated: 2018-09-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Brandt, L.uca

Search in DiVA

By author/editor
Brandt, L.uca
By organisation
Linné Flow Center, FLOWStability, Transition and ControlSeRC - Swedish e-Science Research CentrePhysicochemical Fluid MechanicsFluid Mechanics of Industrial Processes
In the same journal
Journal of Physical Oceanography
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf