Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Creep tests on notched specimens of copper
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Technology.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Technology. KTH, School of Industrial Engineering and Management (ITM), Centres, Brinell Centre - Inorganic Interfacial Engineering, BRIIE.ORCID iD: 0000-0002-8494-3983
Swerea KIMAB, Drottning Kristinas Vag 38, S-11428 Stockholm, Sweden..
2018 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 509, p. 62-72Article in journal (Refereed) Published
Abstract [en]

In Sweden, spent nuclear fuel is planned to be disposed off by placing it in canisters which are made of oxygen free copper alloyed with 50 ppm phosphorus. The canisters are expected to stay intact for thousands of years. During the long term disposal, the canisters will be exposed to mechanical pressure from the surroundings at temperatures up to 100 degrees C and this will result in creep. To investigate the role of the complex stress conditions on the canisters, creep tests under multiaxial stress state are needed. In the present work, creep tests under multiaxial stress state with three different notch profiles (acuity 0.5, 2, and 5, respectively) at 75 degrees C with net section stresses ranging from 170 MPa to 245 MPa have been performed. To interpret the experimental results, finite element computations have been conducted. With the help of the reference stress, the rupture lifetime in the multiaxial tests was estimated. The prediction was more precise for the higher acuities than for the lower one. In order to predict the creep deformation of the canisters for the long service period, fundamental creep models are considered. Previously developed basic models are used to compute the creep deformation in the multiaxial tests. Although the scatter is large, the agreement with the experiments is considered as acceptable, indicating that the basic models which have been successfully developed for uniaxial creep tests can also be used to describe multiaxial creep tests. Notch strengthening was observed for copper.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 509, p. 62-72
Keywords [en]
Multiaxial stress state, Creep, Notched specimen, Finite element modelling, Copper
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-234562DOI: 10.1016/j.jnucmat.2018.06.018ISI: 000442483300007Scopus ID: 2-s2.0-85048759534OAI: oai:DiVA.org:kth-234562DiVA, id: diva2:1249520
Funder
Swedish Nuclear Fuel and Waste Management Company, SKB
Note

QC 20180919

Available from: 2018-09-19 Created: 2018-09-19 Last updated: 2018-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sui, FangfeiSandström, Rolf

Search in DiVA

By author/editor
Sui, FangfeiSandström, Rolf
By organisation
Materials TechnologyBrinell Centre - Inorganic Interfacial Engineering, BRIIE
In the same journal
Journal of Nuclear Materials
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 116 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf