kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing nonlinear electrical properties at the nanoscale: Studies in multifrequency AFM
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0001-8199-5510
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanostructured materials promise great advances in diverse and active research fields such as energy harvesting and storage, corrosion prevention and high-density memories. Electrical characterization at the nanometer scale is key to understanding and optimizing the performance of these materials, and therefore central to the progress of nanotechnology. One of the most versatile tools for this purpose is the atomic force microscope (AFM), thanks to its ability to image surfaces with high spatial resolution.

In this thesis we present several multifrequency techniques for AFM. Intermodulation electrostatic force microscopy (ImEFM) measures the potential of a surface with low noise and high spatial resolution. In contrast to traditionally available methods, ImEFM does not use a feedback-controlled bias to measure the surface potential, and is therefore suitable to measurements in liquid environments. Removing feedback allows the applied bias to be used for investigating charge injection and extraction on nanocomposite materials. Intermodulation conductive AFM (ImCFM) measures the current-voltage characteristic of a sample at every point of an AFM image. ImCFM is able to separate the galvanic and displacement contributions to the measured current, improving the measurement speed by four orders of magnitude compared to previously available methods. We finally demonstrate an alternative approach to pump-probe spectroscopy, which allows the AFM to measure electrical charge dynamics with a time resolution approaching the nanosecond range.

These techniques are based on intermodulation spectroscopy, and they demonstrate the power and flexibility of measuring and analyzing nonlinear response in the frequency domain. The nonlinearity of the tip-surface force is used to concentrate response in a narrow band around the resonance of the AFM cantilever, where force measurement sensitivity is at the thermal limit. In this narrow band, we perform coherent measurements at multiple frequencies by exploiting the stability of a single reference oscillation. The power of the multifrequency approach is nicely demonstrated in a general method for measuring and compensating background forces, i.e. long-range linear forces that act on the body of the AFM probe. This compensation is necessary to reveal the the true force between the surface and the AFM tip. We show the effect of the compensation on soft polymer materials, where the background forces are typically strongest.

Abstract [sv]

Nanostrukturerade material utlovar stora framsteg inom olika forskningsområden som till exempel energiutvinning och lagring, korrosionförebyggande beläggningar och högdensitetsminnen. Elektrisk karakterisering på nanometerskalan är nyckeln till förståelse och optimering av ett materials prestanda, och därmed central för utvecklingen av nanoteknik. Ett av de mest mångsidiga verktygen för detta ändamål är atomkraftmikroskopet (AFM), tack vare dess förmåga att avbilda ytor med hög spatial upplösning.

I denna avhandling presenteras flera multifrekvenstekniker för AFM. Intermodulationselektrostatiskkraftmikroskopi (ImEFM) mäter en ytas ytpotential med lågt brus och hög upplösning. Till skillnad från traditionellt tillgängliga metoder behöver ImEFM inte någon återkopplingsstyrd spänning för att mäta ytpotentialen och är därför lämplig att använda för mätningar i vätska. Genom att ta bort återkopplingen kan den applicerade spänningen istället användas för att undersöka laddningsinjektion och extraktion hos nanokompositmaterial. Intermodulationsström AFM (ImCFM) mäter ström-spänningsegenskaperna hos ett prov vid varje punkt i en AFM-bild. ImCFM kan särskilja galvanisk- och förskjutningsström i mätningar, vilket förbättrar mäthastigheten med fyra storleksordningar jämfört med tidigare tillgängliga metoder. Vi visar slutligen ett alternativ till pump-probespektroskopi, som gör att AFM kan mäta elektrisk laddningsdynamik med en tidsupplösning som närmar sig nanosekunder.

Alla dessa tekniker bygger på intermodulationsspektroskopi, och de visar kraften och flexibiliteten med att mäta och analysera olinjära signal i frekvensområdet. Icke-linjäriteten hos kraften mellan en AFM-spets och en yta används för att koncentrera svaret i ett smalt frekvensband runt AFM-cantileverens resonans, där känsligheten för att mäta kraft är termiskt begränsad. I detta smala band utför vi koherenta mätningar vid flera frekvenser genom att utnyttja stabiliteten hos en enda referensoscillator. Fördelen med denna multifrekvensmetod demonstreras i en allmän metod för att mäta och kompensera bakgrundskrafter, linjära krafter som verkar över långt avstånd på hela AFM-cantilevern. Denna kompensation är nödvändig för att avslöja den sanna kraften mellan ytan och AFM-spetsen. Vi visar effekten av kompensationen på mjuka polymermaterial, där bakgrundskrafterna typiskt är starka.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. , p. 82
Series
TRITA-SCI-FOU ; 2018:38
Keywords [en]
Atomic Force Microscopy, Nonlinear dynamics, Multifrequency, Contact potential difference, Conductance, Fast dynamics
National Category
Condensed Matter Physics Nano Technology
Research subject
Physics
Identifiers
URN: urn:nbn:se:kth:diva-235315ISBN: 978-91-7729-952-3 (print)OAI: oai:DiVA.org:kth-235315DiVA, id: diva2:1251307
Public defence
2018-10-26, FB42, Albanova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

QC 20180927

Available from: 2018-09-27 Created: 2018-09-26 Last updated: 2022-06-26Bibliographically approved
List of papers
1. Intermodulation electrostatic force microscopy for imaging surface photo-voltage
Open this publication in new window or tab >>Intermodulation electrostatic force microscopy for imaging surface photo-voltage
Show others...
2014 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, no 14, p. 143113-Article in journal (Refereed) Published
Abstract [en]

We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photovoltaic material.

National Category
Other Physics Topics
Identifiers
urn:nbn:se:kth:diva-156990 (URN)10.1063/1.4897966 (DOI)000344343900057 ()2-s2.0-84908006009 (Scopus ID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

QC 20141205

Available from: 2014-12-05 Created: 2014-12-04 Last updated: 2022-06-23Bibliographically approved
2. Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer
Open this publication in new window or tab >>Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer
Show others...
2016 (English)In: PHYSICAL REVIEW APPLIED, ISSN 2331-7019, Vol. 6, no 2, article id 024011Article in journal (Refereed) Published
Abstract [en]

The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two- dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 mu m. This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 mu m. High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear currentvoltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices.

Place, publisher, year, edition, pages
American Physical Society, 2016
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-193441 (URN)10.1103/PhysRevApplied.6.024011 (DOI)000381486000002 ()2-s2.0-84994620464 (Scopus ID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationSwedish Institute
Note

QC 20161012

Available from: 2016-10-12 Created: 2016-10-03 Last updated: 2024-03-18Bibliographically approved
3. Local Charge Injection and Extraction on Surface-Modified Al2O3Nanoparticles in LDPE
Open this publication in new window or tab >>Local Charge Injection and Extraction on Surface-Modified Al2O3Nanoparticles in LDPE
Show others...
2016 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 16, no 9, p. 5934-5937, article id 10.1021/acs.nanolett.6b02920Article in journal (Refereed) Published
Abstract [en]

We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016
Keywords
HVDC, intermodulation, KPFM, nanodielectrics, polyethylene nanocomposites, surface potential
National Category
Nano Technology
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-193640 (URN)10.1021/acs.nanolett.6b02920 (DOI)000383412100091 ()27532486 (PubMedID)2-s2.0-84987718577 (Scopus ID)
Funder
Swedish Foundation for Strategic Research , EM11-0022Knut and Alice Wallenberg FoundationSwedish Research Council
Note

QC 20161006

Available from: 2016-10-06 Created: 2016-10-06 Last updated: 2024-03-15Bibliographically approved
4. Background-Force Compensation in Dynamic Atomic Force Microscopy
Open this publication in new window or tab >>Background-Force Compensation in Dynamic Atomic Force Microscopy
Show others...
2017 (English)In: Physical Review Applied, E-ISSN 2331-7019, Vol. 7, no 6, article id 064018Article in journal (Refereed) Published
Abstract [en]

Background forces are linear long-range interactions of the cantilever body with its surroundings that must be compensated for in order to reveal tip-surface force, the quantity of interest for determining material properties in atomic force microscopy. We provide a mathematical derivation of a method to compensate for background forces, apply it to experimental data, and discuss how to include background forces in simulation. Our method, based on linear-response theory in the frequency domain, provides a general way of measuring and compensating for any background force and it can be readily applied to different force reconstruction methods in dynamic AFM.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2017
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-210353 (URN)10.1103/PhysRevApplied.7.064018 (DOI)000403252100001 ()2-s2.0-85021101671 (Scopus ID)
Note

QC 20170704

Available from: 2017-07-04 Created: 2017-07-04 Last updated: 2024-03-15Bibliographically approved
5. Multiparameter investigation of bulk heterojunction organic photovoltaics
Open this publication in new window or tab >>Multiparameter investigation of bulk heterojunction organic photovoltaics
Show others...
2017 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 7, no 73, p. 46313-46320Article in journal (Refereed) Published
Abstract [en]

A key parameter to improve the performance of organic solar cells is the optimization of electronic phenomena at donor-acceptor interfaces through the optimization of the morphology of the bulk heterojunction. The correlative mapping of morphological, electrical and mechanical properties at the nanoscale by advanced scanning probe microscopy techniques allows for a detailed characterization of the local structure-property relationships in bulk heterojunctions solar cells. Unique opportunities for the investigation of these photoactive films are shown here, ultimately suggesting fundamental guidelines toward the accurate engineering of these materials at the nanoscale.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-216694 (URN)10.1039/c7ra07673h (DOI)000412211300052 ()2-s2.0-85030546938 (Scopus ID)
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

QC 20171023

Available from: 2017-10-24 Created: 2017-10-24 Last updated: 2024-03-18Bibliographically approved
6. Fast multifrequency measurement of nonlinear conductance
Open this publication in new window or tab >>Fast multifrequency measurement of nonlinear conductance
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Low noise measurement of small currents in nanometer-scale junctions is of central importance to the characterization of novel high-performance devices and materials for applications ranging from energy harvesting and energy conversion to topological materials for quantum computers. The high resistance of these junctions and the stray capacitance of their measurement leads impose speed limitations (tens of seconds) on the traditional methods of measuring their nonlinear conductance, making detailed investigations of change with external fields or maps of variation over a surface impractical, if not impossible. Here we demonstrate fast (milliseconds) reconstruction of nonlinear current-voltage characteristics from phase-coherent multifrequency lock-in data using the inverse Fourier transform. The measurement technique allows for separation of the galvanic and displacement currents in the junction and easy cancellation of parasitic displacement current due to the measurement leads. We use the method to reveal nanometer-scale variations in the electrical transport properties of organic photovoltaic and semiconducting thin films. The method has broad applicability and its wide-spread implementation promises advancement in high-speed and high-resolution characterization for nanotechnology.

National Category
Condensed Matter Physics Nano Technology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-235359 (URN)
Note

QC 20180927

Available from: 2018-09-24 Created: 2018-09-24 Last updated: 2022-06-26Bibliographically approved
7. Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale
Open this publication in new window or tab >>Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We present an alternative approach to pump-probe spectroscopy for measuring fast charge dynamics with an atomic force microscope (AFM). Our approach is based on coherent multifrequency lock-in measurement of the intermodulation between a mechanical drive and an optical or electrical excitation. In response to the excitation, the charge dynamics of the sample is reconstructed by fitting a theoretical model to the measured frequency spectrum of the electrostatic force near resonance of the AFM cantilever. We discuss the time resolution, which in theory is limited only by the measurement time, but in practice is of order one nanosecond for standard cantilevers and imaging speeds. We verify the method with simulations and demonstrate it with a control experiment, achieving a time resolution of 20 ns in ambient conditions, limited by thermal noise.

National Category
Condensed Matter Physics Nano Technology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-235360 (URN)
Note

QC 20180927

Available from: 2018-09-24 Created: 2018-09-24 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(5153 kB)620 downloads
File information
File name FULLTEXT01.pdfFile size 5153 kBChecksum SHA-512
b15d44383051a4ef237d250e9262e12f626f428000d5ba7ea5d90808ab7c8c84332c72f88dee823302422261d72cc62c189a78b702c863e3bfe41329b9b76b15
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Borgani, Riccardo
By organisation
Nanostructure Physics
Condensed Matter PhysicsNano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 625 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3529 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf