Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Teknikringen 56-58, SE-10044 Stockholm, Sweden.;KTH Royal Inst Technol, BiMaC Innovat, Teknikringen 56-58, SE-10044 Stockholm, Sweden..ORCID iD: 0000-0002-5286-333X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0003-1874-2187
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-8622-0386
KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.ORCID iD: 0000-0002-7410-0333
2018 (English)In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, no 8, p. 9951-9957Article in journal (Refereed) Published
Abstract [en]

Highly porous materials with low density were developed from chemically modified cellulose fibers using solvent-exchange and air drying. Periodate oxidation was initially performed to introduce aldehydes into the cellulose chain, which were then further oxidized to carboxyl groups by chlorite oxidation. Low-density materials were finally achieved by a second periodate oxidation under which the fibers self-assembled into porous fibrous networks. Following a solvent exchange to acetone, these networks could be air-dried without shrinkage. The properties of the materials were tuned by mechanical mixing with a high intensity mixer for different times prior to the second periodate oxidation, which resulted in porosities between 94.4% and 96.3% (i.e., densities between 54 and 82 kg/m(3)). The compressive strength of the materials was between 400 and 1600 kPa in the dry state and between 20 and 50 kPa in the wet state. It was also observed that in the wet state the fiber networks could be compressed up to 80% while still being able to recover their shape. These networks are highly interesting for use in different types of absorption products, and since they also have a high wet integrity, they can be modified with physical methods for different high-value-added end-use applications.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 6, no 8, p. 9951-9957
Keywords [en]
Ambient drying, Cellulose, Chemical modification, Chlorite oxidation, Lightweight material, Periodate oxidation
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-234192DOI: 10.1021/acssuschemeng.8b01165ISI: 000441475500049Scopus ID: 2-s2.0-85049192536OAI: oai:DiVA.org:kth-234192DiVA, id: diva2:1252458
Note

QC 20181001

Available from: 2018-10-01 Created: 2018-10-01 Last updated: 2018-11-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

López Durán, VeronicaErlandsson, JohanWågberg, LarsLarsson, Per A.

Search in DiVA

By author/editor
López Durán, VeronicaErlandsson, JohanWågberg, LarsLarsson, Per A.
By organisation
Fibre TechnologyFibre- and Polymer TechnologyVinnExcellence Center BiMaC Innovation
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 734 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf