Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.ORCID-id: 0000-0002-5286-333X
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.ORCID-id: 0000-0003-1874-2187
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.ORCID-id: 0000-0001-8622-0386
KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.ORCID-id: 0000-0002-7410-0333
2018 (Engelska)Ingår i: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, nr 8, s. 9951-9957Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Highly porous materials with low density were developed from chemically modified cellulose fibers using solvent-exchange and air drying. Periodate oxidation was initially performed to introduce aldehydes into the cellulose chain, which were then further oxidized to carboxyl groups by chlorite oxidation. Low-density materials were finally achieved by a second periodate oxidation under which the fibers self-assembled into porous fibrous networks. Following a solvent exchange to acetone, these networks could be air-dried without shrinkage. The properties of the materials were tuned by mechanical mixing with a high intensity mixer for different times prior to the second periodate oxidation, which resulted in porosities between 94.4% and 96.3% (i.e., densities between 54 and 82 kg/m(3)). The compressive strength of the materials was between 400 and 1600 kPa in the dry state and between 20 and 50 kPa in the wet state. It was also observed that in the wet state the fiber networks could be compressed up to 80% while still being able to recover their shape. These networks are highly interesting for use in different types of absorption products, and since they also have a high wet integrity, they can be modified with physical methods for different high-value-added end-use applications.

Ort, förlag, år, upplaga, sidor
AMER CHEMICAL SOC , 2018. Vol. 6, nr 8, s. 9951-9957
Nyckelord [en]
Ambient drying, Cellulose, Chemical modification, Chlorite oxidation, Lightweight material, Periodate oxidation
Nationell ämneskategori
Polymerteknologi
Identifikatorer
URN: urn:nbn:se:kth:diva-234192DOI: 10.1021/acssuschemeng.8b01165ISI: 000441475500049Scopus ID: 2-s2.0-85049192536OAI: oai:DiVA.org:kth-234192DiVA, id: diva2:1252458
Anmärkning

QC 20181001

Tillgänglig från: 2018-10-01 Skapad: 2018-10-01 Senast uppdaterad: 2019-09-13Bibliografiskt granskad
Ingår i avhandling
1. CONTROLLED ASSEMBLY AND FUNCTIONALISATION OF CELLULOSE-BASED MATERIALS
Öppna denna publikation i ny flik eller fönster >>CONTROLLED ASSEMBLY AND FUNCTIONALISATION OF CELLULOSE-BASED MATERIALS
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The environmental effects caused by the use of fossil-based resources have intensified and driven society and research towards new materials and processes that utilise renewable resources. Within the development of new materials, wood has been identified as a raw-material from which high performing materials can be derived. One such material is cellulose nanofibrils (CNFs) which are capable of replacing several currently used fossil-based materials. However, for CNFs to exhibit the required material properties they need to be chemically or physically modified. This means that the properties of the CNFs can be specifically adapted to fit the demand in particular areas, for example electrical energy storage. In these applications it is the mechanical properties; the large, easily functionalised surface and ability to be moulded into 3D shapes that make CNFs a highly interesting raw material.

This thesis explores the formation and functionalisation of CNF- and fibre-based materials and their novel use in applications such as energy storage. The wet stability of the materials was achieved by crosslinking and ice templating the fibrils by a novel freezing procedure, which makes it possible to avoid the use of freeze-drying and subsequent crosslinking. Using colloidal probe atomic force microscopy adhesion measurements, hemiacetals were shown to be formed between the aldehyde-containing fibrils when they are brought into molecular contact, for example during ice templating. Hemiacetal crosslinked aerogels have been shaped and functionalised to demonstrate their application as biomimetic structural composites, electrical circuits and electrical cells. In addition, crosslinked, light-weight 3D fibre networks were prepared with á similar chemistry by a self-assembly process of pulp fibres. These networks could be dried under ambient conditions and the materials formed were wet-stable due to the hemiacetal crosslinks formed in the fibre–fibre contacts, which provided the networks with excellent mechanical properties and shape recovery capacity in water.

Finally, using a newly developed polyampholyte and mixing it with CNFs, heterofunctional composite films and aerogels could be prepared. By activating crosslinkable groups in these composite materials, they were able to undergo further water based chemical functionalisation. In this highly dispersed state, the composite could be irreversibly crosslinked by a hydrothermal treatment to create transparent, low solid content hydrogels.

Ort, förlag, år, upplaga, sidor
Stockholm: Kungliga Tekniska högskolan, 2019. s. 81
Serie
TRITA-CBH-FOU ; 2019:44
Nationell ämneskategori
Polymerteknologi Pappers-, massa- och fiberteknik
Forskningsämne
Fiber- och polymervetenskap
Identifikatorer
urn:nbn:se:kth:diva-259346 (URN)978-91-7873-295-1 (ISBN)
Disputation
2019-10-11, F3, Lindstedtsvägen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Energimyndigheten, 37716-1
Anmärkning

QC 2019-09-13

Tillgänglig från: 2019-09-13 Skapad: 2019-09-13 Senast uppdaterad: 2019-10-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

López Durán, VeronicaErlandsson, JohanWågberg, LarsLarsson, Per A.

Sök vidare i DiVA

Av författaren/redaktören
López Durán, VeronicaErlandsson, JohanWågberg, LarsLarsson, Per A.
Av organisationen
FiberteknologiVinnExcellens Centrum BiMaC InnovationFiber- och polymerteknologi
Polymerteknologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1396 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf