Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator
Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
Dalian Univ Technol, Inst Artificial Photosynth, Inst Energy Sci & Technol, State Key Lab Fine Chem,DUT KTH Joint Educ & Res, Dalian 116024, Peoples R China..
Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Hubei, Peoples R China..ORCID iD: 0000-0002-8989-6928
Show others and affiliations
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 36, p. 30409-30416Article in journal (Refereed) Published
Abstract [en]

The identification of an efficient and stable redox mediator is of paramount importance for commercialization of dye-sensitized solar cells (DSCs). Herein, we report a new class of copper complexes containing diamine-dipyridine tetradentate ligands (L1 = N,N'-dibenzyl-N,N'-bis-(pyridin-2-ylmethyl)ethylenediamine; L2 = N,N'-dibenzyl-N,N'-bis (6-methyl-pyridin-2-ylmethyl)ethylenediamine) as redox mediators in DSCs. Devices constructed with [Cu(L2)](2+/+) redox couple afford an impressive power conversion efficiency (PCE) of 9.2% measured under simulated one sun irradiation (100 mW cm(-2), AM 1.5G), which is among the top efficiencies reported thus far for DSCs with copper complex-based redox mediators. Remarkably, the excellent air, photo, and electrochemical stability of the [Cu(L2)](2+/+) complexes renders an outstanding long-term stability of the whole DSC device, maintaining similar to 90% of the initial efficiency over 500 h under continuous full sun irradiation. This work unfolds a new platform for developing highly efficient and stable redox mediators for large-scale application of DSCs.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018. Vol. 10, no 36, p. 30409-30416
Keywords [en]
copper redox mediator, dye-sensitized solar cells, ligand engineering, stability, energy conversion
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-235883DOI: 10.1021/acsami.8b10182ISI: 000444793000044PubMedID: 30129357Scopus ID: 2-s2.0-85052863277OAI: oai:DiVA.org:kth-235883DiVA, id: diva2:1254368
Funder
Swedish Foundation for Strategic Research Swedish Energy AgencyKnut and Alice Wallenberg Foundation
Note

QC 20181009

Available from: 2018-10-09 Created: 2018-10-09 Last updated: 2018-11-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Liao, Rong-ZhenSun, Licheng
By organisation
Chemistry
In the same journal
ACS Applied Materials and Interfaces
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf