Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electron Energization at a Reconnecting Magnetosheath Current Sheet
Swedish Inst Space Phys, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden..
Swedish Inst Space Phys, Uppsala, Sweden..
Swedish Inst Space Phys, Uppsala, Sweden..
Swedish Inst Space Phys, Uppsala, Sweden.;St Petersburg State Univ, Dept Phys, St Petersburg, Russia..
Show others and affiliations
2018 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 16, p. 8081-8090Article in journal (Refereed) Published
Description
Abstract [en]

We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (similar to 0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations. Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail, the acceleration mechanism and corresponding heating of electrons is similar. Plain Language Summary Magnetic reconnection is an important physical energy conversion process in astrophysical and laboratory plasmas. The easiest place to analyze magnetic reconnection is in near-Earth space. Due to lack of sufficient electron resolution of previous spacecraft missions, there are many unanswered questions regarding electron heating and acceleration processes at small scales. In particular, the regime where thermal pressure dominates over magnetic pressure, the most common state of plasmas in the Universe, is little explored. In this letter we study such a regime using the four-spacecraft Magnetospheric Multiscale mission. We analyze a reconnecting current sheet in the magnetosheath. We show that electrons are energized by a parallel potential, similar to what has been observed in the different plasma regimes the magnetopause and magnetotail. Thus, despite different plasma conditions, a similar acceleration mechanism and corresponding heating of electrons is occurring in all these regions.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2018. Vol. 45, no 16, p. 8081-8090
Keywords [en]
magnetic reconnection, magnetosheath, electron heating, electron acceleration, Magnetospheric Multiscale
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-236023DOI: 10.1029/2018GL078660ISI: 000445612500023Scopus ID: 2-s2.0-85053268512OAI: oai:DiVA.org:kth-236023DiVA, id: diva2:1255501
Funder
Swedish Research Council, 2013-4309
Note

QC 20181012

Available from: 2018-10-12 Created: 2018-10-12 Last updated: 2019-06-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindqvist, Per-Arne

Search in DiVA

By author/editor
Vaivads, AndrisRussell, Christopher T.Lindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Geophysical Research Letters
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf