Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Human-in-the-Loop Mixed-Initiative Control under Temporal Tasks
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0003-4562-854X
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0001-7372-9247
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-7309-8086
2018 (engelsk)Inngår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, s. 6395-6400Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper considers the motion control and task planning problem of mobile robots under complex high-level tasks and human initiatives. The assigned task is specified as Linear Temporal Logic (LTL) formulas that consist of hard and soft constraints. The human initiative influences the robot autonomy in two explicit ways: with additive terms in the continuous controller and with contingent task assignments. We propose an online coordination scheme that encapsulates (i) a mixed-initiative continuous controller that ensures all-time safety despite of possible human errors, (ii) a plan adaptation scheme that accommodates new features discovered in the workspace and short-term tasks assigned by the operator during run time, and (iii) an iterative inverse reinforcement learning (IRL) algorithm that allows the robot to asymptotically learn the human preference on the parameters during the plan synthesis. The results are demonstrated by both realistic human-in-the-loop simulations and experiments.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2018. s. 6395-6400
Serie
IEEE International Conference on Robotics and Automation ICRA, ISSN 1050-4729
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-237167DOI: 10.1109/ICRA.2018.8460793ISI: 000446394504124Scopus ID: 2-s2.0-85063131458ISBN: 978-1-5386-3081-5 (tryckt)OAI: oai:DiVA.org:kth-237167DiVA, id: diva2:1258283
Konferanse
IEEE International Conference on Robotics and Automation (ICRA), MAY 21-25, 2018, Brisbane, AUSTRALIA
Forskningsfinansiär
Knut and Alice Wallenberg Foundation
Merknad

QC 20181024

Tilgjengelig fra: 2018-10-24 Laget: 2018-10-24 Sist oppdatert: 2020-03-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Guo, MengAndersson, SofieDimarogonas, Dimos V.

Søk i DiVA

Av forfatter/redaktør
Guo, MengAndersson, SofieDimarogonas, Dimos V.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 218 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf