Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion
Romania.
Romania.
Romania.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.ORCID-id: 0000-0002-7750-1917
Vise andre og tillknytning
2018 (engelsk)Inngår i: 15th International Conference on Image Analysis and Recognition, ICIAR 2018, Springer, 2018, s. 754-762Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Breast cancer is the most common cancer type in women worldwide. Histological evaluation of the breast biopsies is a challenging task even for experienced pathologists. In this paper, we propose a fully automatic method to classify breast cancer histological images to four classes, namely normal, benign, in situ carcinoma and invasive carcinoma. The proposed method takes normalized hematoxylin and eosin stained images as input and gives the final prediction by fusing the output of two residual neural networks (ResNet) of different depth. These ResNets were first pre-trained on ImageNet images, and then fine-tuned on breast histological images. We found that our approach outperformed a previous published method by a large margin when applied on the BioImaging 2015 challenge dataset yielding an accuracy of 97.22%. Moreover, the same approach provided an excellent classification performance with an accuracy of 88.50% when applied on the ICIAR 2018 grand challenge dataset using 5-fold cross validation.

sted, utgiver, år, opplag, sider
Springer, 2018. s. 754-762
Emneord [en]
Breast cancer, Classification, Deep learning, Histological images, Biopsy, Classification (of information), Diseases, Image analysis, Medical imaging, Automatic method, Breast biopsies, Classification performance, Cross validation, Grand Challenge, Histological evaluation, Image classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-236392DOI: 10.1007/978-3-319-93000-8_85Scopus ID: 2-s2.0-85049429428ISBN: 9783319929996 (tryckt)OAI: oai:DiVA.org:kth-236392DiVA, id: diva2:1260206
Konferanse
27 June 2018 through 29 June 2018
Merknad

QC 20181101

Tilgjengelig fra: 2018-11-01 Laget: 2018-11-01 Sist oppdatert: 2018-11-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusconference

Personposter BETA

Smedby, ÖrjanWang, Chunliang

Søk i DiVA

Av forfatter/redaktør
Smedby, ÖrjanWang, Chunliang
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 527 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf