Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fatigue life prediction of steel bridges using a small scale monitoring system
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Bro- och stålbyggnad.ORCID-id: 0000-0002-2833-4585
2018 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

With an increasing number of bridges approaching their expected service life, improved and new methods for accurate assessment methods are called for. Economical restraints and sustainability reasons will not allow bridge managers to replace the numerous bridges that theoretically will be judged unsafe. As a method for refined assessment, in-service monitoring can be used to accurately determine the actual structural response. This will enable an alleviation of conservative estimates and facilitate accurate service life predictions.For fatigue assessment, the well established technique for strain measurements using electrical strain gauges can provide accurate estimations of the actual structural response. It is, however, not possible to mount gauges at all positions with critical details for large structures as bridges. The possibility of using a small scale monitoring system with few sensors has been investigated and a review of methods for predicting the response at unmeasured locations is presented in this report. A few selected methods, like multivariate regression and artificial neural networks (ANN), have been tested and evaluated on measured data from the Rautasjokk Bridge.The use of an ANN for time history prediction is demonstrated and promising results are presented. However, the predictions are sensitive to the input data and questionable results were attained when the input deviated from the training set. For predictions based on stress range spectra, multivariate linear regression constitute a robust tool and provided a high accuracy for an example from the Rautasjokk Bridge.This report also contains a presentation of the monitoring campaign of the Rautasjokk Bridge. The setup of the system and the management of data are described. The bridge is used for demonstrating the prediction methods and an advanced assessment approach based on linear elastic fracture mechanics. It enables a consideration of the measured response and a reliability based updating considering inspection results.

Ort, förlag, år, upplaga, sidor
Stockholm, 2018. , s. 55
Nyckelord [en]
Fatigue, Monitoring, Bridges
Nationell ämneskategori
Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-238718OAI: oai:DiVA.org:kth-238718DiVA, id: diva2:1261925
Forskningsfinansiär
Trafikverket, TRV 2015/50535
Anmärkning

QC 20181119

Tillgänglig från: 2018-11-08 Skapad: 2018-11-08 Senast uppdaterad: 2018-11-19Bibliografiskt granskad

Open Access i DiVA

fulltext(8976 kB)76 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8976 kBChecksumma SHA-512
967cb731d77d2ee7adbfa130341f75419fa03e97da8b972f88e5ad4b0c14e5f02ec1fd83b65ac88b736c2ae01cef101ead377769a5a6d63c9a5444d18039b28a
Typ fulltextMimetyp application/pdf

Personposter BETA

Leander, John

Sök vidare i DiVA

Av författaren/redaktören
Leander, John
Av organisationen
Bro- och stålbyggnad
Samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 76 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 193 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf