Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0002-8125-7734
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0002-2900-4713
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
2019 (English)In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 127, p. 203-211Article in journal (Refereed) Published
Abstract [en]

This paper investigated the impact of the amounts of lignin and hemicelluloses on cellulose nanofibers (CNFs). Birch and spruce wood were used to prepare holocellulose and cellulose samples by classical methods. To better assess the effect of the chemical composition on the CNF performance and simplify the process for CNF preparation, no surface derivatization method was applied for CNF preparation. Increased amounts of hemicelluloses, especially mannans, improved the defibration process, the stability of the CNFs and the mechanical properties, whereas the residual lignin content had no significant effect on these factors. On the other hand, high lignin content turned spruce nanopapers yellowish and, together with hemicelluloses, reduced the strain-at-break values. Finally, when no surface derivatization was applied to holocellulose and cellulose samples before defibration, the controlled preservation of residual lignin and hemicelluloses on the CNFs indicate to be crucial for the process. This simplified method of CNF preparation presents great potential for forest-based industries as a way to use forestry waste (e.g., branches, stumps, and sawdust) to produce CNFs and, consequently, diversify the product range and reach new markets.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 127, p. 203-211
Keywords [en]
Birch wood, Spruce wood, Cellulose nanofiber (CNF), Holocellulose CNF, Nanopaper, Residual cell wall components
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-238861DOI: 10.1016/j.indcrop.2018.10.052ISI: 000452565200025Scopus ID: 2-s2.0-85055735243OAI: oai:DiVA.org:kth-238861DiVA, id: diva2:1262844
Note

QC 20181120

Available from: 2018-11-13 Created: 2018-11-13 Last updated: 2019-01-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

de Carvalho, Danila MoraisMoser, CarlLindström, MikaelSevastyanova, Olena

Search in DiVA

By author/editor
de Carvalho, Danila MoraisMoser, CarlLindström, MikaelSevastyanova, Olena
By organisation
Wood Chemistry and Pulp Technology
In the same journal
Industrial crops and products (Print)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf