Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Introducing double bouquet cells into a modular cortical associative memory model
KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST). Aristotle University of Thessaloniki, Faculty of Engineering, School of Electrical and Computer Engineering, 54124, Thessaloniki, Greece.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST). Institute for Adaptive and Neural Computation, Edinburgh University, EH8 9AB Edinburgh, Scotland. (Computational Brain Science)ORCID-id: 0000-0002-7314-8562
KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST). Department of Numerical Analysis and Computer Science, Stockholm University, 10691 Stockholm, Sweden.ORCID-id: 0000-0002-2358-7815
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We present an electrophysiological model of double bouquet cells and integrate them into an established cortical columnar microcircuit model that has previously been used as a spiking attractor model for memory. Learning in that model relies on a Bayesian-Hebbian learning rule to condition recurrent connectivity between pyramidal cells. We here demonstrate that the inclusion of a biophysically plausible double bouquet cell model can solve earlier concerns about learning rules that simultaneously learn excitation and inhibition and might thus violate Dale's Principle. We show that learning ability and resulting effective connectivity between functional columns of previous network models is preserved when pyramidal synapses onto double-bouquet cells are plastic under the same Hebbian-Bayesian learning rule. The proposed architecture draws on experimental evidence on double bouquet cells and effectively solves the problem of duplexed learning of inhibition and excitation by replacing recurrent inhibition between pyramidal cells in functional columns of different stimulus selectivity with a plastic disynaptic pathway. We thus show that the resulting change to the microcircuit architecture improves the model's biological plausibility without otherwise impacting the models spiking activity, basic operation, and learning abilities.

Emneord [en]
Double Bouquet cells electrophysiology cortical microcircuit memory cortex computational neuroscience
HSV kategori
Forskningsprogram
Tillämpad matematik och beräkningsmatematik; Datalogi; Biologisk fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-239040DOI: 10.1101/462010OAI: oai:DiVA.org:kth-239040DiVA, id: diva2:1263423
Merknad

QC 20181115

Tilgjengelig fra: 2018-11-15 Laget: 2018-11-15 Sist oppdatert: 2018-11-15bibliografisk kontrollert

Open Access i DiVA

fulltext(2185 kB)34 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2185 kBChecksum SHA-512
da10f200b7afdc9144fd08b071ebfd529a4df05a0e25b3df986ae66a4298c3ddc0a8f7feea0e7a88fafe02e7f9835f468ee80e3bbf538f7b4f5e97e88271016f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstBioRxiv Preprint

Personposter BETA

Fiebig, FlorianLansner, Anders

Søk i DiVA

Av forfatter/redaktør
Fiebig, FlorianLansner, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 34 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 149 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf