Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
From Tongue Movement Data to Muscle Activation – A Preliminary Study of Artisynth's Inverse Modelling
KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.ORCID iD: 0000-0002-8991-1016
KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.
KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.ORCID iD: 0000-0003-4532-014X
2014 (English)Conference paper, Published paper (Other academic)
Abstract [en]

Finding the muscle activations during speech production is an important part of developing a comprehensive biomechanical model of speech production. Although there are some direct ways, like Electromyography, for measuring muscle activations, these methods usually are highly invasive and sometimes not reliable. They are more over impossible to use for all muscles. In this study we therefore explore an indirect way to estimate tongue muscle activations during speech production by combining Electromagnetic Articulography (EMA) measurements of tongue movements and the inverse modeling in Artisynth. With EMA we measure the time-changing 3D positions of four sensors attached to the tongue surface for a Swedish female subject producing vowel-vowel and vowelconsonant-vowel (VCV) sequences. The measured sensor positions are used as target points for corresponding virtual sensors introduced in the tongue model of Artisynth’s inverse modelling framework, which computes one possible combination of muscle activations that results in the observed sequence of tongue articulations. We present resynthesized tongue movements in the Artisynth model and verify the results by comparing the calculated muscle activations with literature.

Place, publisher, year, edition, pages
2014.
Keywords [en]
speech, tongue, muscle activation, electromagnetic articulography, biomechanics
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-239054OAI: oai:DiVA.org:kth-239054DiVA, id: diva2:1263534
Conference
Parametric Modeling of Human Anatomy, PMHA 14, Aug 22-23, 2014, Vancouver, BC, CA
Funder
EU, FP7, Seventh Framework Programme, 308874
Note

QC 20181116

Available from: 2018-11-15 Created: 2018-11-15 Last updated: 2018-11-16Bibliographically approved
In thesis
1. Computational Modeling of the Vocal Tract: Applications to Speech Production
Open this publication in new window or tab >>Computational Modeling of the Vocal Tract: Applications to Speech Production
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Human speech production is a complex process, involving neuromuscular control signals, the effects of articulators' biomechanical properties and acoustic wave propagation in a vocal tract tube of intricate shape. Modeling these phenomena may play an important role in advancing our understanding of the involved mechanisms, and may also have future medical applications, e.g., guiding doctors in diagnosing, treatment planning, and surgery prediction of related disorders, ranging from oral cancer, cleft palate, obstructive sleep apnea, dysphagia, etc.

A more complete understanding requires models that are as truthful representations as possible of the phenomena. Due to the complexity of such modeling, simplifications have nevertheless been used extensively in speech production research: phonetic descriptors (such as the position and degree of the most constricted part of the vocal tract) are used as control signals, the articulators are represented as two-dimensional geometrical models, the vocal tract is considered as a smooth tube and plane wave propagation is assumed, etc.

This thesis aims at firstly investigating the consequences of such simplifications, and secondly at contributing to establishing unified modeling of the speech production process, by connecting three-dimensional biomechanical modeling of the upper airway with three-dimensional acoustic simulations. The investigation on simplifying assumptions demonstrated the influence of vocal tract geometry features — such as shape representation, bending and lip shape — on its acoustic characteristics, and that the type of modeling — geometrical or biomechanical — affects the spatial trajectories of the articulators, as well as the transition of formant frequencies in the spectrogram.

The unification of biomechanical and acoustic modeling in three-dimensions allows to realistically control the acoustic output of dynamic sounds, such as vowel-vowel utterances, by contraction of relevant muscles. This moves and shapes the speech articulators that in turn dene the vocal tract tube in which the wave propagation occurs. The main contribution of the thesis in this line of work is a novel and complex method that automatically reconstructs the shape of the vocal tract from the biomechanical model. This step is essential to link biomechanical and acoustic simulations, since the vocal tract, which anatomically is a cavity enclosed by different structures, is only implicitly defined in a biomechanical model constituted of several distinct articulators.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 105
Series
TRITA-EECS-AVL ; 2018:90
Keywords
vocal tract, upper airway, speech production, biomechanical model, acoustic model, vocal tract reconstruction
National Category
Computer Sciences
Research subject
Speech and Music Communication
Identifiers
urn:nbn:se:kth:diva-239071 (URN)978-91-7873-021-6 (ISBN)
Public defence
2018-12-07, D2, Lindstedtsvägen 5, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20181116

Available from: 2018-11-16 Created: 2018-11-16 Last updated: 2018-11-16Bibliographically approved

Open Access in DiVA

fulltext(427 kB)10 downloads
File information
File name FULLTEXT01.pdfFile size 427 kBChecksum SHA-512
c259bc5d2497c06c2a833d104caf72f3207fac18f4bea9ea0d39a8c80b73aaa2527c8b7dc81c621ace81ad4664c19a47788938ddbeeed41ad218be70a71a105d
Type fulltextMimetype application/pdf

Authority records BETA

Dabbaghchian, SaeedNilsson, IsakEngwall, Olov

Search in DiVA

By author/editor
Dabbaghchian, SaeedNilsson, IsakEngwall, Olov
By organisation
Speech, Music and Hearing, TMH
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 10 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf