Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae
Delft Univ Technol, Dept Biotechnol, Maasweg 9, NL-2629 HZ Delft, Netherlands..
Delft Univ Technol, Dept Biotechnol, Maasweg 9, NL-2629 HZ Delft, Netherlands..
Delft Univ Technol, Dept Biotechnol, Maasweg 9, NL-2629 HZ Delft, Netherlands..
Delft Univ Technol, Dept Biotechnol, Maasweg 9, NL-2629 HZ Delft, Netherlands..
Vise andre og tillknytning
2018 (engelsk)Inngår i: FEMS yeast research (Print), ISSN 1567-1356, E-ISSN 1567-1364, Vol. 18, nr 6, artikkel-id foy056Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83(G673T) allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.

sted, utgiver, år, opplag, sider
Oxford University Press, 2018. Vol. 18, nr 6, artikkel-id foy056
Emneord [en]
biofuels, yeast, industrial biotechnology, redox engineering, fermentation, pentoses
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-239500DOI: 10.1093/femsyr/foy056ISI: 000449353000006PubMedID: 29771304OAI: oai:DiVA.org:kth-239500DiVA, id: diva2:1265900
Merknad

QC 20181126

Tilgjengelig fra: 2018-11-26 Laget: 2018-11-26 Sist oppdatert: 2018-11-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
van Maris, Antonius J. A.
Av organisasjonen
I samme tidsskrift
FEMS yeast research (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 170 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf