Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Annual climate impact and primary energy use of Swedish transport infrastructure
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Sustainability Assessment and Management.ORCID iD: 0000-0002-0231-7111
The Swedish Transport Administration.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Strategic Sustainability Studies.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Sustainability Assessment and Management. KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment.ORCID iD: 0000-0002-5535-6368
(English)Manuscript (preprint) (Other academic)
Abstract [en]

By 2045, Sweden is to have zero net emissions of greenhouse gases, implying that also the transport sector must reduce its emissions to nearly zero by that year. Planning for emission reduction measures require network level studies showing environmental impacts of the transport network. Previous studies do not allow assessment of current hotspots in the infrastructure network, which limits their relevance for decision-support in this question. The aim of this paper is to assess the current annual climate impact and primary energy use of Swedish transport infrastructure by using a methodological approach based on life cycle assessment. The scope includes new construction and management of roads, railways, airports, ports, and fairway channels. The climate impact was estimated to 3 million tonnes carbon dioxide equivalents and the primary energy use was estimated to 27 terawatt hours. Mainly road and rail infrastructure contributed to these impacts. The environmental hotspots in the infrastructure network were identified as management of the infrastructure stock (particularly reinvestment of road and rail infrastructure) and material production (particularly production of asphalt, steel, and concrete). Planners should work systematically with emission and energy efficiency in these areas to reduce impacts of Swedish transport infrastructure. Additional research on impacts of small construction measures, the size of biogenic carbon emissions (in standing biomass as well as soil carbon), and the use and impacts of asphalt used in road construction and management would further increase the understanding of Swedish transport infrastructure at the network level.

National Category
Other Natural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-239597OAI: oai:DiVA.org:kth-239597DiVA, id: diva2:1266352
Note

QC 20181213

Available from: 2018-11-27 Created: 2018-11-27 Last updated: 2018-12-13Bibliographically approved
In thesis
1. Life cycle assessment in early planning of transport systems: Decision support at project and network levels
Open this publication in new window or tab >>Life cycle assessment in early planning of transport systems: Decision support at project and network levels
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The Swedish Climate Policy Framework implies that the Swedish transport sector must reduce its greenhouse gas emissions to nearly zero by 2045. Previous studies have – using life cycle assessment – shown that indirect greenhouse gas emissions from the vehicle and infrastructure life cycle are significant and should be considered in transport policy and planning of transport systems, in addition to direct emissions of vehicle operation.

The aim of this thesis is to contribute with knowledge on climate impact and primary energy use of transport systems for decision-support in early planning at project and network levels, and evaluate and demonstrate how life cycle climate impact and primary energy use can be assessed in early planning. This thesis includes three papers that contribute to achieving this aim. Paper I developed a methodological approach to assess annual climate impact and primary energy use of Swedish road, rail, air, and sea transport infrastructure at a network level. Paper II then expanded this system to the assessment of the Swedish transport system at a network level, including national and international freight and passenger transport by road, rail, air, and sea. At the project level, Paper III examined how LCA can be used as decision-support in choice of road corridor, considering the practical prerequisite of data availability in early planning and usefulness of results in the decision-making process.

Paper I showed that the annual climate impact of Swedish transport infrastructure is around 3 million tonnes CO2 equivalents and that the annual primary energy use is around 27 TWh. Road infrastructure accounted for the largest proportion of impacts – around 70% of the climate impact and around 80% of the energy use. Paper II showed that the annual climate impact of the Swedish transport system was around 44 million tonnes CO2 equivalents and the primary energy use was around 178 TWh. Road transport and aviation together accounted for 90% of the climate impact and primary energy use. Indirect impacts were significant, especially for road and rail transport, accounting for 30% of the total climate impact and primary energy use. Paper III found that (1) collection of project specific data should focus on parameters that differentiate the road corridors, that can be influenced in early planning, and that are not directly related to the road length and (2) life cycle assessment based models used in early planning should include nation specific generic data approved by the national road authority. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018
Series
TRITA-ABE-DLT ; 1826
National Category
Other Natural Sciences
Identifiers
urn:nbn:se:kth:diva-239600 (URN)978-91-7873-013-1 (ISBN)
Presentation
2018-12-20, Pacific, KTH Royal Institute of Technology, Teknikringen 10B, Stockholm, Sweden, 10:00 (Swedish)
Opponent
Supervisors
Note

QC 20181128

Available from: 2018-11-28 Created: 2018-11-27 Last updated: 2018-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Liljenström, CarolinaÅkerman, JonasBjörklund, Anna

Search in DiVA

By author/editor
Liljenström, CarolinaÅkerman, JonasBjörklund, Anna
By organisation
Sustainability Assessment and ManagementStrategic Sustainability StudiesUrban Planning and Environment
Other Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 334 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf