Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plaque characterization using shear wave elastography-evaluation of differentiability and accuracy using a combined ex vivo and in vitro setup
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems. Karolinska Inst, Dept Clin Sci, Stockholm, Sweden..ORCID iD: 0000-0003-1002-2070
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems.ORCID iD: 0000-0002-9654-447X
Mayo Clin, Coll Med, Dept Radiol, Rochester, MN USA..
Karolinska Inst, Dept Clin Sci, Stockholm, Sweden..
Show others and affiliations
2018 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 63, no 23, article id 235008Article in journal (Refereed) Published
Abstract [en]

Ultrasound elastography has shown potential for improved plaque risk stratification. However, no clear consensus exists on what output metric to use, or what imaging parameters would render optimal plaque differentiation. For this reason we developed a combined ex vivo and in vitro setup, in which the ability to differentiate phantom plaques of varying stiffness was evaluated as a function of plaque geometry, push location, imaging plane, and analysed wave speed metric. The results indicate that group velocity or phase velocity >= 1 kHz showed the highest ability to significantly differentiate plaques of different stiffness, successfully classifying a majority of the 24 analysed plaque geometries, respectively. The ability to differentiate plaques was also better in the longitudinal views than in the transverse view. Group velocity as well as phase velocities <1 kHz showed a systematic underestimation of plaque stiffness, stemming from the confined plaque geometries, however, despite this group velocity analysis showed lowest deviation in estimated plaque stiffness (0.1 m s(-1) compared to 0.2 m s(-1) for phase velocity analysis). SWE results were also invariant to SWE push location, albeit apparent differences in signal-to-noise ratio (SNR) and generated plaque particle velocity. With that, the study has reinforced the potential of SWE for successful plaque differentiation; however the results also highlight the importance of choosing optimal imaging settings and using an appropriate wave speed metric when attempting to differentiate different plaque groups.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2018. Vol. 63, no 23, article id 235008
Keywords [en]
shear wave elastography, elastography, ultrasound, atherosclerosis, plaque characterization
National Category
Medical Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-239984DOI: 10.1088/1361-6560/aaec2bISI: 000451049000003PubMedID: 30468683Scopus ID: 2-s2.0-85057084601OAI: oai:DiVA.org:kth-239984DiVA, id: diva2:1269659
Note

QC 20181211

Available from: 2018-12-11 Created: 2018-12-11 Last updated: 2019-08-21Bibliographically approved
In thesis
1. Non-invasive imaging for improved cardiovascular diagnostics: Shear wave elastography, relative pressure estimation, and tomographic reconstruction
Open this publication in new window or tab >>Non-invasive imaging for improved cardiovascular diagnostics: Shear wave elastography, relative pressure estimation, and tomographic reconstruction
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Throughout the last century, medical imaging has come to revolutionise the way we diagnose disease, and is today an indispensable part of virtually any clinical practice. In cardiovascular care imaging is extensively utilised, and the development of novel techniques promises refined diagnostic abilities: ultrasound elastography allows for constitutive tissue assessment, 4D flow magnetic resonance imaging (MRI) enables full-field flow mapping, and micro-Computed Tomography (CT) permits high-resolution imaging at pre-clinical level. However, following the complex nature of cardiovascular disease, refined methods are still very much needed to accurately utilise these techniques and to effectively isolate disease developments.

The aim of this thesis has been to develop such methods for refined cardiovascular image diagnostics. In total eight studies conducted over three separate focus areas have been included: four on vascular shear wave elastography (SWE), three on non-invasive cardiovascular relative pressure estimations, and one on tomographic reconstruction for pre-clinical imaging.

In Study I-IV, the accuracy and feasibility of vascular SWE was evaluated, with particular focus on refined carotid plaque characterisation. With confined arterial or plaque tissue restricting acoustic wave propagation, analysis of group and phase velocity was performed with SWE output validated against reference mechanical testing and imaging. The results indicate that geometrical confinement has a significant impact on SWE accuracy, however that a combined group and phase velocity approach can be utilised to identify vulnerable carotid plaque lesions in-vivo.

In Study V-VII, a non-invasive method for the interrogation of relative pressure from imaged cardiovascular flow was developed. Using the concept of virtual work-energy, the method was applied to accurately assess relative pressures throughout complex, turbulence-inducing, branching vasculatures. The method was also applied on a dilated cardiomyopathy cohort, indicating arterial hemodynamic changes in cardiac disease.

Lastly, in Study VIII a method for multigrid image reconstruction of tomographic data was developed, utilising domain splitting and operator masking to accurately reconstruct high-resolution regions-of-interests at a fraction of the computational cost of conventional full-resolution methods.

Together, the eight studies have incorporated a range of different imaging modalities, developed methods for both constitutive and hemodynamic cardiovascular assessment, and utilised refined pre-clinical imaging, all with the same purpose: to refine current state cardiovascular imaging and to improve our ability to non-invasively assess cardiovascular disease. With promising results reached, the studies lay the foundation for continued clinical investigations, advancing the presented methods and maturing their usage for an improved future cardiovascular care.

Abstract [sv]

Medicinsk avbildning utgör idag en central del av modern klinisk diagnostik, och bildgivande diagnostikverktyg har kommit att i grunden förändra sättet på vilket dagligt kliniskt arbete utförs. Medicinsk bildteknik används också i stor utsträckning inom hjärt-kärldiagnostik, och i takt med att nya tekniker utvecklas kan förfinad information inhämtas: ultraljudsbaserad elastografi möjliggör avbildning av vävnaders mekaniska egenskaper, fyrdimensionella blodflödesmönster kan kartläggas genom 4D flödes-magnetresonanstomografi (MRI), och mikro-Datortomografi (mikro-CT) möjliggör preklinisk avbildning i mikrometerupplösning. För att kunna dra nytta av dessa teknikers potential i ett kliniskt sammanhang behövs dock förfinade och validerade analysverktyg, särskilt med tanke på hjärt-kärlsjukdomars komplexa och multifaktoriella natur.

Syftet med följande avhandling har varit att utveckla sådana metoder för förbättrad hjärt-kärlavbildning. Avhandlingen innehåller totalt åtta delarbeten fördelat över tre fokusområden: fyra inom vaskulär skjuvvågselastografi (SWE), tre inom icke-invasiv tryckfallsmätning, och en inom pre-klinisk tomografisk bildrekonstruktion.

I studie I-IV utvärderades vaskulär SWE, med särskilt fokus på teknikens potential för förfinad karaktärisering av karotisplack. I alla studier undersöktes SWE grupp- och fashastighet, med estimerade hastigheter och styvheter validerade mot mekanisk referensmätning eller kompletterande avbildning. Resultaten visar hur spatialt avgränsade kärl eller plack har en tydlig inverkan på SWE:s noggrannhet, men indikerar även hur rupturbenägna plack kan identifieras genom en kombination av grupp- och fashastighetsanalys.

I studie V-VII utvecklades en ny metod för icke-invasiv tryckfallsmätning baserad uteslutande på uppmätt 4D-flödesdata. Genom en komplett flödesmekanisk beskrivning i kombination med ett virtuellt flödesfält kan exakta och robusta tryckfallsmätningar genomföras genom komplexa, turbulensinducerande, och kliniskt relevant kardiovaskulära strukturer. Metoden användes också för att analysera en klinisk kohort med dilaterad kardiomyopati, där tydliga förändringar i arteriellt blodtrycksbeteende detekterades.

I studie VIII utvecklades en metod för multidimensionell bildrekonstruktion av tomografisk mikro-CT-data. Genom domän- och operatorseparering visar resultaten hur högupplöst rekonstruktion av en subdomän kan uppnås till en bråkdel av den totala tids- eller minnesåtgången som annars fordras för en fullupplöst bildrekonstruktion.

Tillsammans har de åtta delstudierna använt ett antal olika avbildningsmodaliteter, applicerat både vävnadsbaserat och hemodynamisk utvärdering av hjärt-kärlsystemet, och slutligen inkluderat preklinisk avbildning, allt för att uppnå samma mål: att förbättra klinisk hjärt-kärlavbildning och ge en fördjupad förståelse av olika hjärt-kärlsjukdomars kliniska manifestation genom icke-invasiv avbildning. Avhandlingen utgör också grunden för fortsatta vetenskapliga studier, där de utvärderade metoderna kan komma att förfinas ytterligare som del av en mer omfattande klinisk implementering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 192
Series
TRITA-CBH-FOU ; 2019: 38
Keywords
Medical imaging, Cardiovascular disease, Atherosclerosis, Hemodynamics, Ultrasound, Shear Wave Elastography (SWE), Magnetic Resonance Imaging (MRI), 4D flow MRI, Relative Pressure, Virtual Work-Energy, micro-Computed Tomography (micro-CT), Tomographic reconstruction, Pre-clinical imaging, Medicinsk avbildning, Hjärt-kärlsjukdomar, Ateroskleros, Hemodynamik, Ultraljud, Skjuvvågselastografi (SWE), Magnetresonanstomografi (MRI), 4D flödes-MRI, Tryckfall, Virtuellt flöde, mikro-Datortomografi (mikro-CT), Tomografisk rekonstruktion, Preklinisk avbildning
National Category
Medical Engineering Medical Image Processing
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-256321 (URN)978-91-7873-251-7 (ISBN)
Public defence
2019-09-20, T2, Hälsovägen 11C, Huddinge, 09:00 (English)
Opponent
Supervisors
Note

Karolinska Institutet-KTH joint degree doctoral thesis in in medical technology and medical sciences

Available from: 2019-08-23 Created: 2019-08-21 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Maksuti, EliraLarsson, Matilda

Search in DiVA

By author/editor
Marlevi, DavidMaksuti, EliraLarsson, Matilda
By organisation
Biomedical Engineering and Health Systems
In the same journal
Physics in Medicine and Biology
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf