Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical study of composite materials for coal-based direct carbon fuel cell
COMSATS Univ, Dept Phys, CERL, Lahore Campus, Lahore 54000, Pakistan.;Univ Okara, Dept Phys, Okara 56300, Pakistan.;KTH, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden..
COMSATS Univ, Dept Phys, CERL, Lahore Campus, Lahore 54000, Pakistan..
COMSATS Univ, Dept Phys, CERL, Lahore Campus, Lahore 54000, Pakistan.;Royal Inst Technol KTH, Dept Energy Technol, S-10044 Stockholm, Sweden..ORCID iD: 0000-0003-0599-3630
COMSATS Univ, Dept Phys, CERL, Lahore Campus, Lahore 54000, Pakistan..
Show others and affiliations
2018 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 43, no 28, p. 12900-12908Article in journal (Refereed) Published
Abstract [en]

The efficient conversion of solid carbon fuels into energy by reducing the emission of harmful gases is important for clean environment. In this regards, direct carbon fuel cell (DCFC) is a system that converts solid carbon directly into electrical energy with high thermodynamic efficiency (100%), system efficiency of 80% and half emission of gases compared to conventional coal power plants. This can generate electricity from any carbonaceous fuel such as charcoal, carbon black, carbon fiber, graphite, lignite, bituminous coal and waste materials. In this paper, ternary carbonate-samarium doped ceria (LNK-SDC) electrolyte has been synthesized via co-precipitation technique, while LiNi-CuZnFeO (LNCZFO) electrode has been prepared using solid state reaction method. Due to significant ionic conductivity of electrolyte LNK-SDC, it is used in DCFC. Three types of solid carbon (lignite, bituminous, sub-bituminous) are used as fuel to generate power. The X-ray diffraction confirmed the cubic crystalline structure of samarium doped ceria, whereas XRD pattern of LNCZFO showed its composite structure. The proximate and ultimate coal analysis showed that fuel (carbon) with higher carbon content and lower ash content was promising fuel for DCFC. The measured ionic conductivity of LNK-SDC is 0.0998 Scm(-1) and electronic conductivity of LNCZFO is 10.1 Scm(-1) at 700 degrees C, respectively. A maximum power density of 58 mWcm(-2) is obtained using sub bituminous fuel.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 43, no 28, p. 12900-12908
Keywords [en]
Lignite, Bituminous, Sub-bituminous, LNK-SDC, Proximate and ultimate analysis
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-240216DOI: 10.1016/j.ijhydene.2018.05.104ISI: 000439678700036Scopus ID: 2-s2.0-85048539184OAI: oai:DiVA.org:kth-240216DiVA, id: diva2:1271230
Conference
Forum of Hydrogen and Fuel Cells, DEC 11-13, 2017, Hubei Univ, Wuhan,China
Note

QC 20181217

Available from: 2018-12-17 Created: 2018-12-17 Last updated: 2018-12-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Raza, RizwanBelova, Lyubov M.
By organisation
Materials Science and Engineering
In the same journal
International journal of hydrogen energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf