Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neuromorphic Vision Based Multivehicle Detection and Tracking for Intelligent Transportation System
Tongji Univ, Coll Automot Engn, Shanghai, Peoples R China.;Tech Univ Munich, Robot & Embedded Syst, Munich, Germany..
Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China..
Tech Univ Munich, Robot & Embedded Syst, Munich, Germany..
Tongji Univ, Coll Elect & Informat Engn, Shanghai, Peoples R China..
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Journal of Advanced Transportation, ISSN 0197-6729, E-ISSN 2042-3195, artikel-id 4815383Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Neuromorphic vision sensor is a new passive sensing modality and a frameless sensor with a number of advantages over traditional cameras. Instead of wastefully sending entire images at fixed frame rate, neuromorphic vision sensor only transmits the local pixel-level changes caused by the movement in a scene at the time they occur. This results in advantageous characteristics, in terms of low energy consumption, high dynamic range, sparse event stream, and low response latency, which can be very useful in intelligent perception systems for modern intelligent transportation system (ITS) that requires efficient wireless data communication and low power embedded computing resources. In this paper, we propose the first neuromorphic vision based multivehicle detection and tracking system in ITS. The performance of the system is evaluated with a dataset recorded by a neuromorphic vision sensor mounted on a highway bridge. We performed a preliminary multivehicle tracking-by-clustering study using three classical clustering approaches and four tracking approaches. Our experiment results indicate that, by making full use of the low latency and sparse event stream, we could easily integrate an online tracking-by-clustering system running at a high frame rate, which far exceeds the real-time capabilities of traditional frame-based cameras. If the accuracy is prioritized, the tracking task can also be performed robustly at a relatively high rate with different combinations of algorithms. We also provide our dataset and evaluation approaches serving as the first neuromorphic benchmark in ITS and hopefully can motivate further research on neuromorphic vision sensors for ITS solutions.

Ort, förlag, år, upplaga, sidor
Hindawi Limited , 2018. artikel-id 4815383
Nationell ämneskategori
Datorteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-240793DOI: 10.1155/2018/4815383ISI: 000453761900001Scopus ID: 2-s2.0-85058941276OAI: oai:DiVA.org:kth-240793DiVA, id: diva2:1274863
Anmärkning

QC 20190103

Tillgänglig från: 2019-01-03 Skapad: 2019-01-03 Senast uppdaterad: 2019-01-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Conradt, Jörg
Av organisationen
Beräkningsvetenskap och beräkningsteknik (CST)
I samma tidskrift
Journal of Advanced Transportation
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 204 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf