Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MHD Modeling of the Plasma Interaction With Io's Asymmetric Atmosphere
KTH, Skolan för elektro- och systemteknik (EES). Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany.
Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany..
KTH, Skolan för elektro- och systemteknik (EES).ORCID-id: 0000-0003-0554-4691
Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.;Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA..
2018 (Engelska)Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 11, s. 9286-9311Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Io's atmosphere, with an average equatorial column density of >= 10(20) m(-2), exhibits significant density variations with latitude and longitude. We apply a 3-D magnetohydrodynamic model to investigate the effects of atmospheric asymmetries, both locally from volcanic plumes and globally, on the plasma and magnetic field environment of Io. The model takes into account collisions between ions and neutrals, plasma production and loss due to electron impact ionization and dissociative recombination, and the ionospheric Hall effect. Our simulation results show that volcanic plumes influence the plasma interaction locally, generating Alfven winglets within Io's global Alfven wing. Signals from individual plumes can however barely be probed by magnetic field measurements during spacecraft flybys at Io. In contrast, the surface number density, scale height, the longitudinal and latitudinal variations of the global atmosphere are crucial factors for modeling and understanding magnetic field and plasma perturbations. Comparing our model results with the magnetic field data from the 124 and 127 flybys of the Galileo spacecraft, we find that the measured perturbations can be primarily caused by the plasma interaction with the longitudinally asymmetric atmosphere. This implies that a significant magnetic induction signal from a partially molten magma ocean is not necessarily required to explain the Galileo magnetometer data.

Ort, förlag, år, upplaga, sidor
Blackwell Publishing, 2018. Vol. 123, nr 11, s. 9286-9311
Nationell ämneskategori
Geofysik
Identifikatorer
URN: urn:nbn:se:kth:diva-240773DOI: 10.1029/2018JA025747ISI: 000453227400027Scopus ID: 2-s2.0-85056882248OAI: oai:DiVA.org:kth-240773DiVA, id: diva2:1275172
Anmärkning

QC 20190104

Tillgänglig från: 2019-01-04 Skapad: 2019-01-04 Senast uppdaterad: 2019-01-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Roth, Lorenz

Sök vidare i DiVA

Av författaren/redaktören
Blöcker, AljonaRoth, Lorenz
Av organisationen
Skolan för elektro- och systemteknik (EES)
I samma tidskrift
Journal of Geophysical Research - Space Physics
Geofysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 21 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf