Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Zhejiang Univ, Coll Opt Sci & Engn, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China..
Show others and affiliations
2018 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 26, p. 34060-34069Article in journal (Refereed) Published
Abstract [en]

In this paper, we experimentally demonstrate a 450-nm laser underwater wireless optical transmission system by using adaptive bit-power loading discrete multi-tone (DMT) and Volterra series based post nonlinear equalization. Post nonlinear equalization mitigates the nonlinear impairment of the UWOC system. By incorporating post nonlinear equalization with a 3rd-order diagonal plane kernel, the received signal-to-noise ratio (SNR) can be improved by similar to 2 dB compared with a linear equalization method. The measured transmission capacity of the UWOC system is 16.6 Gbps over 5 m, 13.2 Gbps over 35 m, and 6.6 Gbps over 55 m tap water channel, with bit error rates (BERs) below the standard hard-decision forward error correction (HD-FEC) limit of 3.8 x 10(-3). The used electrical signal bandwidth is 2.75 GHz, corresponding to electrical spectrum efficiency of similar to 6 bit/s/Hz. The distance-datarate product reaches 462 Gbps*m at 35 m tap water transmission. To the best of our knowledge, both the data rate and distance-data rate product are the largest reported for single laser diode.

Place, publisher, year, edition, pages
OPTICAL SOC AMER , 2018. Vol. 26, no 26, p. 34060-34069
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-241199DOI: 10.1364/OE.26.034060ISI: 000454149000051Scopus ID: 2-s2.0-85059217267OAI: oai:DiVA.org:kth-241199DiVA, id: diva2:1280852
Note

QC 20190121

Available from: 2019-01-21 Created: 2019-01-21 Last updated: 2019-01-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

He, Sailing

Search in DiVA

By author/editor
He, Sailing
By organisation
Electromagnetic Engineering
In the same journal
Optics Express
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf