Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploiting poly(ɛ-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites
Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.ORCID-id: 0000-0002-9572-6888
Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.ORCID-id: 0000-0003-4226-8593
Vise andre og tillknytning
2018 (engelsk)Inngår i: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study reports the development of nanocomposites based on poly(?-caprolactone) (PCL) and cellulose nanofibrils (CNF) modified with cationic latex nanoparticles. The physical adsorption of these water-based latexes on the surface of CNF was studied as an environment-friendly strategy to enhance the compatibility of CNF with a hydrophobic polymeric matrix. The latexes are composed of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) as the hydrophilic block, and either poly(methyl methacrylate) or poly(n-butyl methacrylate) as the hydrophobic block. The simple and practical melt-mixing of PCL- and latex-modified CNF yielded white homogeneous nanocomposites with complete embedment of the nanofibrils in the thermoplastic matrix. All nanocomposites are semicrystalline materials with good mechanical properties (Young's modulus?=?43.6?52.3 MPa) and thermal stability up to 335?340°C. Degradation tests clearly showed that the nanocomposites slowly degrade in the presence of lipase-type enzyme. These PCL/CNF-latex nanocomposite materials show great promise as future environmentally friendly packaging materials. POLYM. COMPOS., 2018. ? 2018 Society of Plastics Engineers

sted, utgiver, år, opplag, sider
John Wiley & Sons, Ltd , 2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-241451DOI: 10.1002/pc.24865ISI: 000463102200009Scopus ID: 2-s2.0-85045412566OAI: oai:DiVA.org:kth-241451DiVA, id: diva2:1281462
Merknad

QC 20190123

Tilgjengelig fra: 2019-01-22 Laget: 2019-01-22 Sist oppdatert: 2019-04-29bibliografisk kontrollert
Inngår i avhandling
1. Tailored adhesion of PISA-latexes for cellulose modification and new materials
Åpne denne publikasjonen i ny fane eller vindu >>Tailored adhesion of PISA-latexes for cellulose modification and new materials
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis is focused on applying modification chemistry to already known cellulosic substrates from wood (i.e. cellulose nanofibrils, CNFs, and cellulose nanocrystals, CNCs). The modification is needed to overcome the drawbacks with the nanocellulosics alone, such as sensitivity to water (hydrophilicity) and the brittle material properties (however great stiffness). The first aim is to incorporate nanocellulosics into hydrophobic degradable materials of poly(ε-caprolactone) (PCL), resulting in aggregation if not modified. The challenge is to reach high fraction of nanocellulosics, whilst maintaining the flexibility of PCL and improving the properties of the resulting nanocomposite with the corresponding stiffness of the nanocellulosics. The second aim is to increase toughness and strain-at-break for nanocomposite materials of CNF-networks, to increase the plastic deformation equivalent of fossil-based polymeric materials such as polypropylene (PP). Aiming to achieve these goals, the thesis also includes new synthetic strategies of tailored-made set of block copolymers as modifying components. The modifying components, were synthesised by surfactant-free emulsion polymerisation and polymerisation induced self-assembly (PISA), so called PISA-latexes.

Two types of cationic polyelectrolytes, (poly(2-dimethylaminoethy methacrylate) (PDMAEMA) and poly(N-[3-(dimethylamino)propyl] methacrylamide (PDMAPMA)), being the corona of the latex, were synthesised. Followed by chain-extension with different hydrophobic monomers such as methyl methacrylate and butyl methacrylate, making up the core polymer of the resulting PISA-latex. The cationic PISA-latexes show narrow size distributions and the glass transition (Tg) of the core polymer can be varied between -40 °C to 150 °C. The PISA-latexes show strong adhesion to silica and cellulose surfaces as assessed by quartz crystal microbalance (QCM-D). Results also indicate that latexes with Tg below room temperature, considered soft, behave different in the wet state than latexes with Tg above room temperature, considered rigid. The softer latexes form clusters (visualised by imaging with microscopy and atomic force measurements (AFM)) and undergo film formation in the wet state. The latter, shown by colloidal probe measurements using AFM resulting in very large work of adhesion and pull-off forces.

The PISA-latexes compatibilize CNCs and different CNFs with PCL as a matrix polymer, observed by a small increase in stiffness for the final nanocomposites, however not at a level expected by rule-of-mixtures. The promising wet feeding technique results in large increase in stiffness but maintain PCL’s flexibility, above 200% strain-at-break, which is rarely observed for CNF-reinforced nanocomposites. The, in this case, rigid latex facilitate the dispersion of CNFs in the matrix without aggregation, until finally coalescing after processing and possibly giving rise to improved adhesion between CNF and the latex in the matrix, indicated by rheology measurements. Lastly, new nanocomposite films consisting of 75wt% CNF and 25wt% of PISA-latexes were produced and evaluated. The results show that CNF and rigid 100 nm sized PISA-latex, with PMMA core, gives a very tough double network, with strain-at-break above 28%, stiffness of 3.5 GPa and a strength of 110 MPa. These are impressive properties compared to commonly used fossil-based plastic materials.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2019. s. 128
Serie
TRITA-CBH-FOU ; 2019:7
Emneord
PISA, latex, RAFT, Cellulose Nanofibrils, Cellulose Nanocrystals, Nanocomposites
HSV kategori
Forskningsprogram
Fiber- och polymervetenskap
Identifikatorer
urn:nbn:se:kth:diva-241463 (URN)978-91-7873-086-5 (ISBN)
Disputas
2019-02-22, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20190123

Tilgjengelig fra: 2019-01-23 Laget: 2019-01-22 Sist oppdatert: 2019-05-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Engström, JoakimJawerth, MarcusCarlmark, Anna

Søk i DiVA

Av forfatter/redaktør
Engström, JoakimJawerth, MarcusCarlmark, Anna
Av organisasjonen
I samme tidsskrift
Polymer Composites

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 169 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf