kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanostructured Biopolymeric Materials: Hydrodynamic Assembly, Mechanical Properties and Bio-Functionalities
KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.ORCID iD: 0000-0002-2029-4881
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The need for high-end multifunctional materials from renewable resources has evolved given a rapidly increasing population and accompanying environmental concerns. Scalable assembly methods are and will be imperative in designing high-performance environmentally friendly materials, requiring new processes allowing control on all hierarchical levels. In this thesis, engineering concepts for manipulation of nanoscale components from biopolymeric resources have been applied to achieve extraordinary macroscale performance. The route chosen has been fluid-phase assembly as it is one of the most promising methods for producing large, ordered structures from nanoscale objects.

 

The thesis has three main parts; assembly of cellulose nanofibrils (CNFs) and fundamentals associated with the processing technique, the combination of CNFs with silk fusion proteins and finally the assembly of amyloid-like protein nanofibrils (PNFs). In the CNFs assembly part, we have pursued the challenge of transferring the full potential of CNFs to macroscale materials. CNFs are the most abundant structural elements in biological systems and have impressively high strength and stiffness, yet natural or man-made cellulose composites are much weaker than the CNFs. We fabricated nanocellulose fibers in pursuit of maximal mechanical performance by hydrodynamically controlling the structural ordering of nanofibrils, resulting in continuous fibers with mechanical properties higher than any natural or man-made macroscale biopolymeric material (Young’s modulus 86 GPa and a tensile strength 1.57 GPa). As the hydrodynamic assembly process is largely dependent on fundamental phenomenon controlling rotational and translational diffusion, we have applied a novel methodology based on birefringence allowing time-resolved in-situ investigations of diffusion and network dynamics of nanofibrils including effects of anisotropic orientation distributions.

 

Genetic engineering enables the synthesis of bioengineered silk fusion proteins that can serve as a foundation of new biomaterials. However, silk proteins are difficult to process and cannot be obtained in large quantities from spiders. By combining CNFs with recombinant spider silk proteins (RSPs) we have fabricated strong, tough and bioactive nanocomposites.   We demonstrate how small amounts of silk fusion proteins added to CNFs give advanced bio-functionalities unattainable to wood-based CNFs alone. Finally, flow-assisted assembly is applied to fabricate a material from 100% non-crystalline protein building blocks with whey protein, a mixture with β-lactoglobulin as the main component, which self-assemble into amyloid-like PNFs stabilized by hydrogen bonds. We show how conditions during the fibrillation process affect properties and morphology of the PNFs. Furthermore, we compare the assembly of whey PNFs of distinct morphologies and show that PNFs can be assembled into strong microfibers without the addition of plasticizers or crosslinkers.

Abstract [sv]

Behovet av avancerade multifunktionella material från förnyelsebara råvaror ökar med en snabbt växande befolkning i världen och behovet av att värna om vår miljö. Skalbara framställningsprocesser är och kommer att vara avgörande för utformningen av dessa hållbara och miljövänliga material med hög prestanda, vilket kräver nya processer som möjliggör kontroll av materialens struktur på alla hierarkiska nivåer. I denna avhandling har ny teknologi för kontrollerad sammanfogning av nanokomponenter baserade på biopolymerer tillämpats för att uppnå extraordinära egenskaper på makroskopisk nivå. Den valda teknologin är baserad på strömningsmekanisk sammanfogning, vilket är en lovande metod för att kontinuerligt framställa makroskopiska strukturerade material från nanokomponenter.

Avhandlingen består av tre huvudspår; strömningsmekanisk sammanfogning av nanocellulosa (här syftar vi främst till cellulosananofibriller, CNF) och därtill associerade grundläggande frågeställningar kring processen kopplat till detta; framställning av material baserat på kombinationen av nanocellulosa med silkesproteiner och slutligen framställning av material bestående av amyloidliknande proteinnanofibriller (PNF). När det gäller sammanfogning av nanocellulosa har målet vara att förstå de förhållanden under vilka framställningen av makroskopiska material av CNF resulterar i materialegenskaper som förmår utnyttja de mekaniska egenskaperna hos nanokomponenterna. Nanocellulosa är det mest förekommande strukturella bio-baserade elementet på jorden och har en imponerande hög hållfasthet och styvhet, och naturliga och framställda cellulosamaterial har hittills varit mycket svagare än nanocellulosa. Genom att strömningsmekaniskt påverka hur nanocellulosan bildar nanostrukturen hos kontinuerliga fiberr, med målet om maximal mekanisk prestanda, har vi framställt fiberr som är starkare och styvare än något annat naturligt eller konstgjort biomaterial (elasticitetsmodul 86 GPa och draghållfasthet 1.57 GPa). Eftersom den strömningsmekaniska framställningsprocessen i stor utsträckning är beroende av grundläggande fenomen som rotationsdiffusion och nätverksgenerering av nanopartiklar, har vi även tillämpat en ny metod baserad på dubbelbrytning som möjliggör tidsbesparande in-situ karakterisering av rotationsdiffusion och nätverksdynamik för nanofibrillära komponenter, inklusive effekterna på anisotropa orienteringsfördelning.

Genteknik möjliggör syntes av silkesproteiner som kan tjäna som grund för nya biomaterial. Silkesproteiner är emellertid svåra att hanteras och kan bara erhållas i små mängder från spindlar. Genom att kombinera nanocellulosa med rekombinant spindelsilkeprotein har vi tillverkat starka, tåliga och bioaktiva nanokompositer. Vi visar hur små mängder silkesfusionsproteiner kan kombineras med nanocellulosa för att ge avancerad biofunktionalitet som inte kan uppnås med nanocellulosamaterial. Slutligen har den strömningsbaserade framställningsprocessen använts att tillverka material från 100% icke-kristallina byggstenar av vassleprotein. Dessa byggstenar består av en blandning med p-laktoglobulin som huvudkomponent, vilken självgenererar amyloidliknande proteinnanofibriller stabiliserade av vätebindningar. Vi visar hur förhållandena under fibrilleringsprocessen påverkar egenskaper och morfologin hos proteinnanofibrillerna. Slutligen framställs material av proteinnanofibriller med olika morfologier, där vi visar hur dessa kan sammanfogas i starka kontinuerliga fiberr utan tillsats av mjukgörare eller tvärbindande komponenter.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. , p. 87
Series
TRITA-SCI-FOU ; 2019:5
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-243487ISBN: 978-91-7873-088-9 (print)OAI: oai:DiVA.org:kth-243487DiVA, id: diva2:1286485
Public defence
2019-03-15, F3, Lindstedtsvägen 26, floor 2, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190208

Available from: 2019-02-08 Created: 2019-02-07 Last updated: 2022-10-24Bibliographically approved
List of papers
1. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers
Open this publication in new window or tab >>Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers
Show others...
2018 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 7, p. 6378-6388Article in journal (Refereed) Published
Abstract [en]

Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
Keywords
bio-based materials, selforganization, mechanical properties, microfluidics, cellulose nanofibrils, nanocompositesbio-based materials, selforganization, mechanical properties, microfluidics, cellulose nanofibrils, nanocomposites
National Category
Engineering and Technology
Research subject
Engineering Mechanics; Fibre and Polymer Science; Physics
Identifiers
urn:nbn:se:kth:diva-229288 (URN)10.1021/acsnano.8b01084 (DOI)000440505000004 ()29741364 (PubMedID)2-s2.0-85049865626 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180608

Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2023-09-19Bibliographically approved
2. Size-Dependent Orientational Dynamics of Brownian Nanorods
Open this publication in new window or tab >>Size-Dependent Orientational Dynamics of Brownian Nanorods
2018 (English)In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 7, no 8, p. 1022-1027Article in journal (Refereed) Published
Abstract [en]

Successful assembly of suspended nanoscale rod-like particles depends on fundamental phenomena controlling rotational and translational diffusion. Despite the significant developments in fluidic fabrication of nanostructured materials, the ability to quantify the dynamics in processing systems remains challenging. Here we demonstrate an experimental method for characterization of the orientation dynamics of nanorod suspensions in assembly flows using orientation relaxation. This relaxation, measured by birefringence and obtained after rapidly stopping the flow, is deconvoluted with an inverse Laplace transform to extract a length distribution of aligned nanorods. The methodology is illustrated using nanocelluloses as model systems, where the coupling of rotational diffusion coefficients to particle size distributions as well as flow-induced orientation mechanisms are elucidated. 

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-233806 (URN)10.1021/acsmacrolett.8b00487 (DOI)000444659000022 ()35650955 (PubMedID)2-s2.0-85052098273 (Scopus ID)
Note

QC 20180903

Available from: 2018-08-28 Created: 2018-08-28 Last updated: 2024-03-15Bibliographically approved
3. Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers at the Nanoscale.
Open this publication in new window or tab >>Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers at the Nanoscale.
(English)Manuscript (preprint) (Other academic)
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-243485 (URN)
Note

QC 20190304

Available from: 2019-02-05 Created: 2019-02-05 Last updated: 2022-10-24Bibliographically approved
4. Ultrastrong and Bioactive Nanostructured Bio-Based Composites
Open this publication in new window or tab >>Ultrastrong and Bioactive Nanostructured Bio-Based Composites
Show others...
2017 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 11, no 5, p. 5148-5159Article in journal (Refereed) Published
Abstract [en]

Nature’s design of functional materials relies on smart combinations of simple components to achieve desired properties. Silk and cellulose are two clever examples from nature–spider silk being tough due to high extensibility, whereas cellulose possesses unparalleled strength and stiffness among natural materials. Unfortunately, silk proteins cannot be obtained in large quantities from spiders, and recombinant production processes are so far rather expensive. We have therefore combined small amounts of functionalized recombinant spider silk proteins with the most abundant structural component on Earth (cellulose nanofibrils (CNFs)) to fabricate isotropic as well as anisotropic hierarchical structures. Our approach for the fabrication of bio-based anisotropic fibers results in previously unreached but highly desirable mechanical performance with a stiffness of ∼55 GPa, strength at break of ∼1015 MPa, and toughness of ∼55 MJ m–3. We also show that addition of small amounts of silk fusion proteins to CNF results in materials with advanced biofunctionalities, which cannot be anticipated for the wood-based CNF alone. These findings suggest that bio-based materials provide abundant opportunities to design composites with high strength and functionalities and bring down our dependence on fossil-based resources.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017
National Category
Materials Chemistry Polymer Chemistry Biochemistry and Molecular Biology
Research subject
Chemistry; Biotechnology
Identifiers
urn:nbn:se:kth:diva-206974 (URN)10.1021/acsnano.7b02305 (DOI)000402498400086 ()28475843 (PubMedID)2-s2.0-85019918798 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2170517

Available from: 2017-05-11 Created: 2017-05-11 Last updated: 2022-10-24Bibliographically approved
5. Flow-assisted assembly of nanostructured protein microfibers
Open this publication in new window or tab >>Flow-assisted assembly of nanostructured protein microfibers
Show others...
2017 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 6, p. 1232-1237Article in journal (Refereed) Published
Abstract [en]

Some of the most remarkable materials in nature are made from proteins. The properties of these materials are closely connected to the hierarchical assembly of the protein building blocks. In this perspective, amyloid-like protein nanofibrils (PNFs) have emerged as a promising foundation for the synthesis of novel bio-based materials for a variety of applications. Whereas recent advances have revealed the molecular structure of PNFs, the mechanisms associated with fibril-fibril interactions and their assembly into macroscale structures remain largely unexplored. Here, we show that whey PNFs can be assembled into microfibers using a flow-focusing approach and without the addition of plasticizers or cross-linkers. Microfocus small-angle X-ray scattering allows us to monitor the fibril orientation in the microchannel and compare the assembly processes of PNFs of distinct morphologies. We find that the strongest fiber is obtained with a sufficient balance between ordered nanostructure and fibril entanglement. The results provide insights in the behavior of protein nanostructures under laminar flow conditions and their assembly mechanism into hierarchical macroscopic structures.

Place, publisher, year, edition, pages
PNAS, 2017
Keywords
protein nanofibrils, amyloid, hierarchical assembly, flow focusing, small-angle X-ray scattering
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-203155 (URN)10.1073/pnas.1617260114 (DOI)000393422200026 ()28123065 (PubMedID)2-s2.0-85011654002 (Scopus ID)
Note

Qc 20170315

Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

fulltext(3742 kB)471 downloads
File information
File name FULLTEXT01.pdfFile size 3742 kBChecksum SHA-512
c83ae2dc82591018af56a78aa84aed0fe13bcc04dcdbf7d94176bfc1e338c1d30263d811748f21e34fd6594589c7c68c0bd011dce15cee6c5cdfb47f32dcae2f
Type fulltextMimetype application/pdf

Authority records

Mittal, Nitesh

Search in DiVA

By author/editor
Mittal, Nitesh
By organisation
Fluid Physics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 472 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2019 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf