We consider a network of several independent linear systems controlled over a shared communication network. Data transmissions pertaining to each control loop are arbitrated by a scheduler collocated with the plant's sensors that transmits the state information to the corresponding remote controller collocated with the plant's actuators. The shared communication channel is assumed to be operating based on a contention-based protocol, endowing the networked control system with desirable reconfigurable and scalable features. We propose a class of scheduling policies which admit a decentralized optimal control implementation and an event-triggered policy within this class which is shown to be consistent, i.e. it results in a better control performance for any linear system, measured by an average quadratic cost than its non-event-based counterpart.
QC 20190307