Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection and Tracking of General Movable Objects in Large Three-Dimensional Maps
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.ORCID-id: 0000-0003-1189-6634
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.ORCID-id: 0000-0002-1170-7162
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.ORCID-id: 0000-0002-7796-1438
2019 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 35, nr 1, s. 231-247Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper studies the problem of detection and tracking of general objects with semistatic dynamics observed by a mobile robot moving in a large environment. A key problem is that due to the environment scale, the robot can only observe a subset of the objects at any given time. Since some time passes between observations of objects in different places, the objects might be moved when the robot is not there. We propose a model for this movement in which the objects typically only move locally, but with some small probability they jump longer distances through what we call global motion. For filtering, we decompose the posterior over local and global movements into two linked processes. The posterior over the global movements and measurement associations is sampled, while we track the local movement analytically using Kalman filters. This novel filter is evaluated on point cloud data gathered autonomously by a mobile robot over an extended period of time. We show that tracking jumping objects is feasible, and that the proposed probabilistic treatment outperforms previous methods when applied to real world data. The key to efficient probabilistic tracking in this scenario is focused sampling of the object posteriors.

sted, utgiver, år, opplag, sider
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2019. Vol. 35, nr 1, s. 231-247
Emneord [en]
Dynamic mapping, mobile robot, movable objects, multitarget tracking (MTT), Rao-Blackwellized particle filter (RBPF), service robots
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-245151DOI: 10.1109/TRO.2018.2876111ISI: 000458197300017Scopus ID: 2-s2.0-85057204782OAI: oai:DiVA.org:kth-245151DiVA, id: diva2:1295883
Merknad

QC 20190313

Tilgjengelig fra: 2019-03-13 Laget: 2019-03-13 Sist oppdatert: 2019-03-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bore, NilsEkekrantz, JohanJensfelt, PatricFolkesson, John

Søk i DiVA

Av forfatter/redaktør
Bore, NilsEkekrantz, JohanJensfelt, PatricFolkesson, John
Av organisasjonen
I samme tidsskrift
IEEE Transactions on robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 835 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf