Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Uncertainty quantification, propagation and characterization by Bayesian analysis combined with global sensitivity analysis applied to dynamical intracellular pathway models
KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST). KTH, Centra, SeRC - Swedish e-Science Research Centre.ORCID-id: 0000-0003-0740-4318
AstraZeneca, IMED Biotech Unit, Early Clin Dev, Biometr, Gothenburg, Sweden..
Lund Univ, Ctr Math Sci, Lund, Sweden..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST). KTH, Centra, Science for Life Laboratory, SciLifeLab.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 35, nr 2, s. 284-292Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivation: Dynamical models describing intracellular phenomena are increasing in size and complexity as more information is obtained from experiments. These models are often over-parameterized with respect to the quantitative data used for parameter estimation, resulting in uncertainty in the individual parameter estimates as well as in the predictions made from the model. Here we combine Bayesian analysis with global sensitivity analysis (GSA) in order to give better informed predictions; to point out weaker parts of the model that are important targets for further experiments, as well as to give guidance on parameters that are essential in distinguishing different qualitative output behaviours. Results: We used approximate Bayesian computation (ABC) to estimate the model parameters from experimental data, as well as to quantify the uncertainty in this estimation (inverse uncertainty quantification), resulting in a posterior distribution for the parameters. This parameter uncertainty was next propagated to a corresponding uncertainty in the predictions (forward uncertainty propagation), and a GSA was performed on the predictions using the posterior distribution as the possible values for the parameters. This methodology was applied on a relatively large model relevant for synaptic plasticity, using experimental data from several sources. We could hereby point out those parameters that by themselves have the largest contribution to the uncertainty of the prediction as well as identify parameters important to separate between qualitatively different predictions. This approach is useful both for experimental design as well as model building.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2019. Vol. 35, nr 2, s. 284-292
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
URN: urn:nbn:se:kth:diva-245950DOI: 10.1093/bioinformatics/bty607ISI: 000459314900013PubMedID: 30010712Scopus ID: 2-s2.0-85060038208OAI: oai:DiVA.org:kth-245950DiVA, id: diva2:1295989
Anmärkning

QC 20190313

Tillgänglig från: 2019-03-13 Skapad: 2019-03-13 Senast uppdaterad: 2019-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Eriksson, OliviaKramer, AndreiHellgren Kotaleski, Jeanette

Sök vidare i DiVA

Av författaren/redaktören
Eriksson, OliviaKramer, AndreiNair, Anu G.Hellgren Kotaleski, Jeanette
Av organisationen
Beräkningsvetenskap och beräkningsteknik (CST)SeRC - Swedish e-Science Research CentreScience for Life Laboratory, SciLifeLab
I samma tidskrift
Bioinformatics
Bioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 84 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf