Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Motion Planning and Goal Assignment for Robot Fleets Using Trajectory Optimization
Orebro Univ, AASS Res Ctr, Orebro, Sweden..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.ORCID-id: 0000-0001-9603-1677
Orebro Univ, AASS Res Ctr, Orebro, Sweden..
Orebro Univ, AASS Res Ctr, Orebro, Sweden..
2018 (engelsk)Inngår i: 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Maciejewski, AA Okamura, A Bicchi, A Stachniss, C Song, DZ Lee, DH Chaumette, F Ding, H Li, JS Wen, J Roberts, J Masamune, K Chong, NY Amato, N Tsagwarakis, N Rocco, P Asfour, T Chung, WK Yasuyoshi, Y Sun, Y Maciekeski, T Althoefer, K AndradeCetto, J Chung, WK Demircan, E Dias, J Fraisse, P Gross, R Harada, H Hasegawa, Y Hayashibe, M Kiguchi, K Kim, K Kroeger, T Li, Y Ma, S Mochiyama, H Monje, CA Rekleitis, I Roberts, R Stulp, F Tsai, CHD Zollo, L, IEEE , 2018, s. 7939-7946Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper is concerned with automating fleets of autonomous robots. This involves solving a multitude of problems, including goal assignment, motion planning, and coordination, while maximizing some performance criterion. While methods for solving these sub-problems have been studied, they address only a facet of the overall problem, and make strong assumptions on the use-case, on the environment, or on the robots in the fleet. In this paper, we formulate the overall fleet management problem in terms of Optimal Control. We describe a scheme for solving this problem in the particular case of fleets of non-holonomic robots navigating in an environment with obstacles. The method is based on a two-phase approach, whereby the first phase solves for fleet-wide boolean decision variables via Mixed Integer Quadratic Programming, and the second phase solves for real-valued variables to obtain an optimized set of trajectories for the fleet. Examples showcasing the features of the method are illustrated, and the method is validated experimentally.

sted, utgiver, år, opplag, sider
IEEE , 2018. s. 7939-7946
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-246312DOI: 10.1109/IROS.2018.8594118ISI: 000458872707027Scopus ID: 2-s2.0-85062969864ISBN: 978-1-5386-8094-0 (tryckt)OAI: oai:DiVA.org:kth-246312DiVA, id: diva2:1297368
Konferanse
25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), OCT 01-05, 2018, Madrid, SPAIN
Merknad

QC 20190319

Tilgjengelig fra: 2019-03-19 Laget: 2019-03-19 Sist oppdatert: 2019-05-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Krug, Robert

Søk i DiVA

Av forfatter/redaktør
Krug, Robert
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 1 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf