Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0003-2145-3650
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, SI-1000 Ljubljana, Slovenia.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0002-2123-2201
Show others and affiliations
2019 (English)In: Journal of Biomedical Materials Research - Part B Applied Biomaterials, ISSN 1552-4973, Vol. 107, no 3, p. 858-867Article in journal (Refereed) Published
Abstract [en]

The titanium–aluminium (6 wt%)–vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H 2 O 2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H 2 O 2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H 2 O 2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H 2 O 2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H 2 O 2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way.

Place, publisher, year, edition, pages
WILEY , 2019. Vol. 107, no 3, p. 858-867
Keywords [en]
implant, XPS, inflammation, complexation, dissolution
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-248329DOI: 10.1002/jbm.b.34182ISI: 000461683400040PubMedID: 30102828Scopus ID: 2-s2.0-85052655822OAI: oai:DiVA.org:kth-248329DiVA, id: diva2:1303230
Note

QC 20190409

Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2019-04-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Hedberg, YolandaHerting, GunillaOdnevall Wallinder, Inger

Search in DiVA

By author/editor
Hedberg, YolandaZnidarsic, MonikaHerting, GunillaOdnevall Wallinder, Inger
By organisation
Surface and Corrosion Science
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf