Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring crosslinked networks of polymers and hybrid cellulose materials
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-9486-5288
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The field of polymer chemistry has in recent decades had an immense development, resulting in new functional materials with groundbreaking applications. This has been driven partly by strong interdisciplinary alliances between the fields of medicine, biology, chemistry, and materials science. Thermoresponsive block copolymers, have been built for their ability to self-assemble, giving possibility of encapsulation and release of medicine. The dendritic polymer family have been demonstrated as a prime example of highly reactive and interactive functional materials, suitable for biomedical applications. The importance of amines is greatly appreciated in general and especially in polymer chemistry, due to their nucleophilic characteristics in reactions, but also for their ability to interact with other species. There’s also an increase in awareness of standard of living, the effects of climate change and population growth. These are challenges, in need of our outmost focus and knowledge, to direct our path to, towards a more bio based circular economy. This starts, in Sweden, by taking better care of our forest and utilizing its resourceful crop. This thesis seek out spontaneous crosslinking, of various functional polymers, with focus towards hybridizing with nanocellulosic material.

Initially, interactive permanently charged amine-functional thermoresponsive tri- and star-block copolymers were composed. These were evaluated and used as electrostatic macro-crosslinker of cellulose nanofibrils (CNFs), resulting in thermoresponsive, low dry weight content hydrogels, with notable temperature dependent storage modulus.

Secondly, reactive and interactive amine-functional dendritic-linear-dendritic (DLD) species were constructed and evaluated in vitro and in vivo. The DLD scaffolds were utilized as fast-degrading, inhibiting surgical site infection (SSIs) antibacterial hydrogel coatings. The crosslinking of the poly(ethylene glycol) (PEG) system was optimized in order to create a two component system, which could be applied with dual syringes. This enabled instantaneous gelation under physiological conditions. The hydrogels moduli could be varied to match various tissues.

Thirdly, insights and characterizations were provided in the commercial heterofunctional poly(amido amine) carboxylate hyperbranched Helux. Amine post-modifications and intrinsic heterofunctionality alterations of Helux were explored, by increasing the molecular weight and forming Helux self-crosslinked films. Furthermore, two component hydrogels based on Helux and PEG demonstrated curing temperature dependent moduli in the rheometer.

Finally, utilizing Helux in combination with CNFs to demonstrate the potential to mix on the nanoscale without aggregation. The CNF-Helux could form hydrogels, and wet-stable thermo-crosslinked CNF-Helux composites assemblies such as films and aerogels, with further excess of amines ready for post-modifications of the crosslinked 3D-network.

Abstract [sv]

Polymerkemin har under de senaste decennierna haft en enorm utveckling, vilket har resulterat i nya funktionella material med banbrytande applikationer. Denna utveckling har drivits på av starka tvärvetenskapliga allianser mellan medicin, biologi, kemi och materialvetenskap. Termoresponsiva block-sampolymerer har bland annat tagits fram för sin förmåga att själv-organiseras, vilken möjliggör inkapsling och frisättning av medicin. Den dendritiska polymerfamiljen har visat sig vara ett utmärkt exempel på högreaktiva och interaktiva funktionella material, speciellt lämpliga för biomedicinska tillämpningar. Betydelsen av aminer är stor i allmänhet och speciellt inom polymerkemin, tack vare deras nukleofila egenskaper i reaktioner, men också för deras förmåga att interagera med andra fysikaliska konstellationer. Det finns också en ökad medvetenhet om vår ökande levnadsstandard, effekterna av klimatförändringar och jordens befolkningstillväxt. Dessa utmaningar, behöver vårt yttersta fokus och ökad kunskap, för att styra våra steg mot en mer biobaserad cirkulär ekonomi. I Sverige skulle vi kunna ta bättre hand om vår skog och utnyttja dess fina råmaterial och förädla den till nya material. Denna avhandling strävar efter spontan tvärbindning av olika funktionella polymerer, med fokus på hybridisering med nanocellulosa-material.

Initialt framställdes interaktiva, permanent laddade, amin-funktionella termoresponsiva tri- och stjärnblocksampolymerer. Dessa utvärderades och användes som elektrostatisk makro-tvärbindare för cellulosa nanofibriller (CNF), vilket resulterade i hydrogeler med låg torrhalt och anmärkningsvärd termoresponsivitet och skjuvningsmodul.

För det andra utvecklades och utvärderades reaktiva och interaktiva aminfunktionella dendritiska linjär-dendritiska (DLD)-polymerer in vitro och in vivo. DLD-polymererna användes som antibakteriella hydrogeler som var snabbnedbrytande och verkade hämmande för kirurgiskt påverkad sårinfekiton (SSI). Tvärbindning av poly(etylen glykol) (PEG) systemet optimerades för snabb applicering under fysiologiska förhållanden i from av tvåkomponentssystem samt för att kunna matcha olika vävnaders skjuvningsmodul.

För det tredje introducerades och karakteriserades Helux, den hyperförgrenade kommersiella heterofunktionella poly(amidoamin) karboxylat polymeren. Aminreaktioner utfördes för att demonstrera lättillgängliga modifieringar av Helux. Hetero-funktionaliteten utvärderades genom att öka molekylvikten och sedan bilda självtvärbundna Heluxfilmer. Dessutom framställdes även tvåkomponents-hydrogeler baserat på Helux och PEG som visade temperaturhärdningsberoende skjuvningsmodul.

Slutligen användes Helux i kombination med CNF för att visa potentialen i att blanda på nanonivå utan aggregering. CNF-Helux visade sig kunna bilda hydrogeler och våtstabila termo-tvärbundna CNF-Helux-kompositsammansättningar, såsom filmer och aerogeler, redo för ytmodifiering av kvarvarande amin-grupper i de bildade 3D-nätverken.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. , p. 65
Series
TRITA-CBH-FOU ; 2019:23
National Category
Polymer Chemistry Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-249211ISBN: 978-91-7873-173-2 (print)OAI: oai:DiVA.org:kth-249211DiVA, id: diva2:1304090
Public defence
2019-05-10, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2019-04-16 Created: 2019-04-11 Last updated: 2019-04-16Bibliographically approved
List of papers
1. High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cellulose nanofibrils
Open this publication in new window or tab >>High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cellulose nanofibrils
Show others...
2016 (English)In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 54, no 21, p. 3415-3424Article in journal (Refereed) Published
Abstract [en]

Atom transfer radical polymerization (ATRP) has been utilized to synthesize tri- and star-block copolymers of poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) and quaternized poly(2-(dimethylamino)ethyl methacrylate) (qPDMAEMA). The block copolymers, all with a minimum of two cationically charged blocks, were sequentially used for electrostatic macrocrosslinking of a dilute dispersion of anionic TEMPO-oxidized cellulose nanofibrils (CNF, 0.3 wt%), forming free-standing hydrogels. The cationic block copolymers adsorbed irreversibly to the CNF, enabling the formation of ionically crosslinked hydrogels, with a storage modulus of up to 2.9 kPa. The ability of the block copolymers to adsorb to CNF was confirmed by quartz crystal microbalance with dissipation monitoring (QCM-D) and infrared spectroscopy (FT-IR), and the thermoresponsive properties of the hydrogels were investigated by rheological stress and frequency sweep, and gravimetric measurements. This method was shown to be promising for the facile production of thermoresponsive hydrogels based on CNF.

Place, publisher, year, edition, pages
John Wiley & Sons, 2016
Keywords
ATRP, cationic block copolymer, cellulose nanofibrils, hydrogels, thermoresponsive, Atom transfer radical polymerization, Block copolymers, Cellulose, Electrostatics, Ethylene, Ethylene glycol, Free radical reactions, Infrared spectroscopy, Nanofibers, Quartz crystal microbalances, 2-(dimethylamino)ethyl methacrylate, Cross-linked hydrogels, Gravimetric measurements, Quartz crystal microbalance with dissipation monitoring, Star block copolymer, Thermo-responsive, Thermo-responsive hydrogels
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-195220 (URN)10.1002/pola.28225 (DOI)000386657600003 ()2-s2.0-84988040360 (Scopus ID)
Note

QC 20161117

Available from: 2016-11-17 Created: 2016-11-02 Last updated: 2019-04-11Bibliographically approved
2. Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings
Open this publication in new window or tab >>Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings
Show others...
2019 (English)In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 5Article in journal (Refereed) Published
Abstract [en]

Abstract A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged ?-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G? = 0.5?8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2019
Keywords
antibacterial, dendrimer, hydrogels, surgical-site infection
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-249169 (URN)10.1002/adhm.201801619 (DOI)000461575200014 ()2-s2.0-85061270456 (Scopus ID)
Note

QC 20190412

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-04-12Bibliographically approved
3. Helux: A heterofunctional hyperbranched poly(amido amine) carboxylate
Open this publication in new window or tab >>Helux: A heterofunctional hyperbranched poly(amido amine) carboxylate
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-249208 (URN)
Note

QC 20190521

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-05-21Bibliographically approved
4. The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional material
Open this publication in new window or tab >>The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional material
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-249210 (URN)
Note

QC 20190412

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-04-12Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2020-04-16 12:13
Available from 2020-04-16 12:13

Search in DiVA

By author/editor
Ingverud, Tobias
By organisation
Coating TechnologyWallenberg Wood Science Center
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 291 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf