Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of the sound transmission through a locally resonant metamaterial cylindrical shell in the ring frequency region
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.ORCID iD: 0000-0002-6555-531X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.ORCID iD: 0000-0002-9632-8398
2019 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 125, no 11, article id 115105Article in journal (Refereed) Published
Abstract [en]

Locally resonant metamaterial flat panels have proved to potentially exhibit extraordinary sound transmission loss properties when the resonance frequency of the resonators is tuned to the coincidence frequency region. Whether this technique is also effective to address the ring frequency effect for curved panels is investigated in this paper. For this purpose, a cylindrical shell, as a representation of curved panels, is studied from a theoretical and numerical point of view, with a specific focus on the transmission loss behaviour around the ring frequency region when the shell is mounted with local resonators. The influence from the resonators is presented and compared with that for a flat panel. An inverse effect of the resonators is observed on the sound transmission loss between the metamaterial cylindrical shell and the metamaterial flat panel when the resonance frequency of the resonators is tuned to be below or above the ring or coincidence frequency, respectively. Rather than the extraordinary improvement observed for the metamaterial flat panel, tuning such conventional resonators to the ring frequency of curved panels generates two side dips despite a sharp improvement at the ring frequency itself. This phenomenon is explained from an effective impedance point of view developed in this paper. The approach proposed and the conclusions provided may subsequently allow for the design of suitable resonators in order to resolve the ring frequency effect for curved panels.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2019. Vol. 125, no 11, article id 115105
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-249881DOI: 10.1063/1.5081134ISI: 000462014300023Scopus ID: 2-s2.0-85063319719OAI: oai:DiVA.org:kth-249881DiVA, id: diva2:1306726
Note

QC 20190424

Available from: 2019-04-24 Created: 2019-04-24 Last updated: 2019-04-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Liu, ZiboRumpler, RomainFeng, Leping

Search in DiVA

By author/editor
Liu, ZiboRumpler, RomainFeng, Leping
By organisation
Marcus Wallenberg Laboratory MWLVinnExcellence Center for ECO2 Vehicle design
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf