Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling variability in the video domain: language and experience report
Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 2 Ave JF Kennedy, L-1855 Luxembourg, Luxembourg..
Univ Rennes, DiverSE Team Inria Rennes, IRISA, CNRS, Rennes, France..
Univ Seville, Dept Comp Languages & Syst, Seville, Spain..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0002-4015-4640
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Software quality journal, ISSN 0963-9314, E-ISSN 1573-1367, Vol. 27, nr 1, s. 307-347Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In an industrial project, we addressed the challenge of developing a software-based video generator such that consumers and providers of video processing algorithms can benchmark them on a wide range of video variants. This article aims to report on our positive experience in modeling, controlling, and implementing software variability in the video domain. We describe how we have designed and developed a variability modeling language, called VM, resulting from the close collaboration with industrial partners during 2 years. We expose the specific requirements and advanced variability constructs; we developed and used to characterize and derive variations of video sequences. The results of our experiments and industrial experience show that our solution is effective to model complex variability information and supports the synthesis of hundreds of realistic video variants. From the software language perspective, we learned that basic variability mechanisms are useful but not enough; attributes and multi-features are of prior importance; meta-information and specific constructs are relevant for scalable and purposeful reasoning over variability models. From the video domain and software perspective, we report on the practical benefits of a variability approach. With more automation and control, practitioners can now envision benchmarking video algorithms over large, diverse, controlled, yet realistic datasets (videos that mimic real recorded videos)-something impossible at the beginning of the project.

Ort, förlag, år, upplaga, sidor
Springer, 2019. Vol. 27, nr 1, s. 307-347
Nyckelord [en]
Variability modeling, Feature modeling, Software product line engineering, Configuration, Automated reasoning, Domain-specific languages, Video testing
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-249887DOI: 10.1007/s11219-017-9400-8ISI: 000462236000009Scopus ID: 2-s2.0-85043359422OAI: oai:DiVA.org:kth-249887DiVA, id: diva2:1307248
Anmärkning

QC 20190426

Tillgänglig från: 2019-04-26 Skapad: 2019-04-26 Senast uppdaterad: 2019-04-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Baudry, Benoit

Sök vidare i DiVA

Av författaren/redaktören
Baudry, Benoit
Av organisationen
Programvaruteknik och datorsystem, SCS
I samma tidskrift
Software quality journal
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 136 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf