Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Banach Wasserstein GAN
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).ORCID-id: 0000-0001-9928-3407
Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England..
2018 (Engelska)Ingår i: Advances in Neural Information Processing Systems 31 (NIPS 2018) / [ed] Bengio, S Wallach, H Larochelle, H Grauman, K CesaBianchi, N Garnett, R, Neural Information Processing Systems (NIPS) , 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Wasserstein Generative Adversarial Networks (WGANs) can be used to generate realistic samples from complicated image distributions. The Wasserstein metric used in WGANs is based on a notion of distance between individual images, which induces a notion of distance between probability distributions of images. So far the community has considered l(2) as the underlying distance. We generalize the theory of WGAN with gradient penalty to Banach spaces, allowing practitioners to select the features to emphasize in the generator. We further discuss the effect of some particular choices of underlying norms, focusing on Sobolev norms. Finally, we demonstrate a boost in performance for an appropriate choice of norm on CIFAR-10 and CelebA.

Ort, förlag, år, upplaga, sidor
Neural Information Processing Systems (NIPS) , 2018.
Serie
Advances in Neural Information Processing Systems, ISSN 1049-5258 ; 31
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:kth:diva-249915ISI: 000461852001031OAI: oai:DiVA.org:kth-249915DiVA, id: diva2:1307316
Konferens
32nd Conference on Neural Information Processing Systems (NIPS), DEC 02-08, 2018, Montreal, Canada
Anmärkning

QC 20190426

Tillgänglig från: 2019-04-26 Skapad: 2019-04-26 Senast uppdaterad: 2019-10-18Bibliografiskt granskad
Ingår i avhandling
1. Data-driven Methods in Inverse Problems
Öppna denna publikation i ny flik eller fönster >>Data-driven Methods in Inverse Problems
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this thesis on data-driven methods in inverse problems we introduce several new methods to solve inverse problems using recent advancements in machine learning and specifically deep learning. The main goal has been to develop practically applicable methods, scalable to medical applications and with the ability to handle all the complexities associated with them.

In total, the thesis contains six papers. Some of them are focused on more theoretical questions such as characterizing the optimal solutions of reconstruction schemes or extending current methods to new domains, while others have focused on practical applicability. A significant portion of the papers also aim to bringing knowledge from the machine learning community into the imaging community, with considerable effort spent on translating many of the concepts. The papers have been published in a range of venues: machine learning, medical imaging and inverse problems.

The first two papers contribute to a class of methods now called learned iterative reconstruction where we introduce two ways of combining classical model driven reconstruction methods with deep neural networks. The next two papers look forward, aiming to address the question of "what do we want?" by proposing two very different but novel loss functions for training neural networks in inverse problems. The final papers dwelve into the statistical side, one gives a generalization of a class of deep generative models to Banach spaces while the next introduces two ways in which such methods can be used to perform Bayesian inversion at scale.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 196
Serie
TRITA-SCI-FOU ; 2019;49
Nyckelord
Inverse Problems, Machine Learning, Tomography
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-262727 (URN)978-91-7873-334-7 (ISBN)
Disputation
2019-10-31, F3, Lindstedtsvägen26, KTH, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Tillgänglig från: 2019-10-21 Skapad: 2019-10-18 Senast uppdaterad: 2019-10-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Adler, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Adler, Jonas
Av organisationen
Matematik (Avd.)
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 270 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf