Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving Strong Scalability Limits of Finite Element Based Solvers
KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for High Performance Computing, PDC.ORCID iD: 0000-0002-5020-1631
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Current finite element codes scale reasonably well as long as each core has sufficient amount of local work that can balance communication costs. However, achieving efficient performance at exascale will require unreasonable large problem sizes, in particular for low-order methods, where the small amount of work per element already is a limiting factor on current post petascale machines. One of the key bottlenecks for these methods is sparse matrix assembly, where communication latency starts to limit performance as the number of cores increases. We present our work on improving strong scalability limits of message passing based general low-order finite element based solvers. Using lightweight one-sided communication, we demonstrate that the scalability of performance critical, latency sensitive kernels can achieve almost an order of magnitude better scalability. We introduce a new hybrid MPI/PGAS implementation of the open source general finite element framework FEniCS, replacing the linear algebra backend with a new library written in UPC. A detailed description of the implementation and the hybrid interface to FEniCS is given, and we present a detailed performance study of the hybrid implementation on Cray XC40 machines.

Place, publisher, year, edition, pages
2019.
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-253827OAI: oai:DiVA.org:kth-253827DiVA, id: diva2:1327101
Conference
48th International Conference on Parallel Processing, Aug. 2019, Kyoto, Japan
Note

QC 20190624

Available from: 2019-06-19 Created: 2019-06-19 Last updated: 2019-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference webpage

Search in DiVA

By author/editor
Jansson, Niclas
By organisation
Centre for High Performance Computing, PDC
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf