Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatio-Temporal Multiple Geo-Location Identification on Twitter
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0003-1007-8533
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.ORCID-id: 0000-0003-4516-7317
2018 (Engelska)Ingår i: Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 / [ed] Abe, N Liu, H Pu, C Hu, X Ahmed, N Qiao, M Song, Y Kossmann, D Liu, B Lee, K Tang, J He, J Saltz, J, Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 3412-3421Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Twitter Geo-tags that indicate the exact location of messages have many applications from localized opinion mining during elections to efficient traffic management in critical situations. However, less than 6% of Tweets are Geo-tagged, which limits the implementation of those applications. There are two groups of solutions: content and network-based. The first group uses location indicative factors like URLs and topics, extracted from the content of tweets, to infer Geo-location for non geoactive users, whereas the second group benefits from friendship ties in the underlying social network graph. Friendship ties are better predictors compared to content information because they are less noisy and often follow the natural human spatial movement patterns. However, their prediction's accuracy is still limited because they ignore the temporal aspects of human behavior and always assume a single location per user. This research aims to extend the current network-based approaches by taking users' temporal dimension into account. We assume multiple locations per user during different time-slots and hypothesize that location predictability varies depending on the time and the properties of the social membership group. Thus, we propose a hierarchical solution to apply temporal categorizations on top of social network partitioning for multiple location prediction for users in Online Social Networks (OSNs) like Twitter. Given a largescale Twitter dataset, we show that users' location predictability exhibits different behavior in different time-slots and different social groups. We find that there are specific conditions where users are more predictable in terms of Geo-location. Our solution outperforms the state-of-the-art by improving the prediction accuracy by 16:6% in terms of Median Error Distance (MED) over the same recall.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. s. 3412-3421
Serie
IEEE International Conference on Big Data, ISSN 2639-1589
Nyckelord [en]
Geo-Location Identification, Graph Partitioning, Social Network Analysis, Spatio-Temporal Analysis
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-254147DOI: 10.1109/BigData.2018.8621997ISI: 000468499303064Scopus ID: 2-s2.0-85062605032ISBN: 978-1-5386-5035-6 (tryckt)OAI: oai:DiVA.org:kth-254147DiVA, id: diva2:1329207
Konferens
2018 IEEE International Conference on Big Data, Big Data 2018; Seattle; United States; 10 December 2018 through 13 December 2018
Anmärkning

QC 20190624

Tillgänglig från: 2019-06-24 Skapad: 2019-06-24 Senast uppdaterad: 2019-06-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Ghoorchian, KambizGirdzijauskas, Sarunas

Sök vidare i DiVA

Av författaren/redaktören
Ghoorchian, KambizGirdzijauskas, Sarunas
Av organisationen
Programvaruteknik och datorsystem, SCS
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 51 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf