Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte
KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektronik.ORCID-id: 0000-0001-9329-9088
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymerteknologi.ORCID-id: 0000-0002-7790-8987
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 21, s. 10172-10177Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The advance of miniaturized and low-power electronics has a striking impact on the development of energy storage devices with constantly tougher constraints in terms of form factor and performance. Microsupercapacitors (MSCs) are considered a potential solution to this problem, thanks to their compact device structure. Great efforts have been made to maximize their performance with new materials like graphene and to minimize their production cost with scalable fabrication processes. In this regard, we developed a full inkjet printing process for the production of all-graphene microsupercapacitors with electrodes based on electrochemically exfoliated graphene and an ultrathin solid-state electrolyte based on nano-graphene oxide. The devices exploit the high ionic conductivity of nano-graphene oxide coupled with the high electrical conductivity of graphene films, yielding areal capacitances of up to 313 mu F cm-2 at 5 mV s-1 and high power densities of up to 4 mW cm-3 with an overall device thickness of only 1 mu m.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2019. Vol. 11, nr 21, s. 10172-10177
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-254076DOI: 10.1039/c9nr01427fISI: 000470697800002PubMedID: 31107494Scopus ID: 2-s2.0-85066626832OAI: oai:DiVA.org:kth-254076DiVA, id: diva2:1329345
Anmärkning

QC 20190624

Tillgänglig från: 2019-06-24 Skapad: 2019-06-24 Senast uppdaterad: 2019-08-16Bibliografiskt granskad
Ingår i avhandling
1. Inkjet Printing of Graphene-based Microsupercapacitors for Miniaturized Energy Storage Applications
Öppna denna publikation i ny flik eller fönster >>Inkjet Printing of Graphene-based Microsupercapacitors for Miniaturized Energy Storage Applications
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Printing technologies are becoming increasingly popular because they enable the large-scale and low-cost production of functional devices with various designs, functions, mechanical properties and materials. Among these technologies, inkjet printing is promising thanks to its direct (mask-free) patterning, non-contact nature, low material waste, resolution down to 10 µm, and compatibility with a broad range of materials and substrates. As a result, inkjet printing has applications in several fields like wearables, opto-electronics, thin-film transistors, displays, photovoltaic devices, and in energy storage. It's in energy storage that the technique shows its full potential by allowing the production of miniaturized devices with a compact form factor, high power density and long cycle life, called microsupercapacitors (MSCs). To this end, graphene has a number of remarkable properties like high electrical conductivity, large surface area, elasticity and transparency, making it a top candidate as an electrode material for MSCs.

Some key drawbacks limit the use of inkjet printing for the production of graphene-based MSCs. This thesis aims at improving its scalability by producing fully inkjet printed devices, and extending its applications through the integration of inkjet printing with other fabrication techniques.

MSCs typically rely on the deposition by hand of gel electrolyte that is not printable or by submerging the whole structure into liquid electrolyte. Because of this, so far large-scale production of more than 10 interconnected devices has not been attempted. In this thesis, a printable gel electrolyte ink based on poly(4-styrene sulfonic acid) was developed, allowing the production of large arrays of more than 100 fully inkjet printed devices connected in series and parallel that can be reliably charged up to 12 V. Also, a second electrolyte ink based on nano-graphene oxide, a solid-state material with high ionic conductivity, was formulated to optimize the volumetric performance of these devices. The resulting MSCs were also fully inkjet printed and exhibited an overall device thickness of around 1 µm, yielding a power density of 80 mW cm-3.

Next, the use of inkjet printing of graphene was explored for the fabrication of transparent MSCs. This application is typically hindered by the so-called coffee-ring effect, which creates dark deposits on the edges of the drying patterns and depletes material from the inside area. In light of this issue, inkjet printing was combined with etching to remove the dark deposits thus leaving uniform and thin films of graphene with vertical sidewalls. The resulting devices showed a transmittance of up to 90%.

Finally, the issue of the substrate compatibility of inkjet printed graphene was addressed. Although inkjet printing is considered to have broad substrate versatility, it is unreliable on hydrophilic or porous substrates and most inks (including graphene inks) require thermal annealing that damages substrates that are not resistant to heat. Accordingly, a technique based on inkjet printing and wet transfer was developed to reliably deposit graphene-based MSCs on a number of substrates, including flat, 3D, porous, plastics and biological (plants and fruits) with adverse surfaces.

The contributions of this thesis have the potential to boost the use of inkjet printed MSCs in applications requiring scalability and resolution (e.g. on-chip integration) as well as applications requiring conformability and versatility (e.g. wearable electronics).

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2019. s. 73
Serie
TRITA-EECS-AVL ; 2019:61
Nyckelord
Inkjet printing, graphene, supercapacitor, microsupercapacitor, energy storage, printed electronics, printing technologies
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-256035 (URN)978-91-7873-255-5 (ISBN)
Disputation
2019-09-13, Sal B, Electrum, Kistagången 16, Kungliga tekniska högskolan, Kista, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet
Anmärkning

QC 20190816

Tillgänglig från: 2019-08-16 Skapad: 2019-08-16 Senast uppdaterad: 2019-08-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Delekta, Szymon SollamiAdolfsson, Karin H.Benyahia Erdal, NejlaHakkarainen, MinnaÖstling, MikaelLi, Jiantong

Sök vidare i DiVA

Av författaren/redaktören
Delekta, Szymon SollamiAdolfsson, Karin H.Benyahia Erdal, NejlaHakkarainen, MinnaÖstling, MikaelLi, Jiantong
Av organisationen
ElektronikFiber- och polymerteknologiPolymerteknologi
I samma tidskrift
Nanoscale
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 136 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf