Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Cost-Effective Wideband Switched Beam Antenna System for a Small Cell Base Station
KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
Show others and affiliations
2018 (English)In: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 66, no 12, p. 6851-6861, article id 8485638Article in journal (Refereed) Published
Abstract [en]

A wideband switched beam antenna array system operating from 2 to 5 GHz is presented. It is comprised of a 4 × 1 Vivaldi antenna elements and a 4 × 4 Butler matrix beamformer driven by a digitally controlled double-pole four-throw RF switch. The Butler matrix is implemented on a multilayer structure, using 90° hybrid couplers and 45° phase shifters. For the design of the coupler and phase shifter, we propose a unified methodology applied, but not limited, to elliptically shaped geometries. The multilayer realization enables us to avoid microstrip crossing and supports wideband operation of the beamforming network. To realize the Butler matrix, we introduce a step-by-step and stage-by-stage design methodology that enables accurate balance of the output weights at the antenna ports to achieve a stable beamforming performance. In this paper, we use a Vivaldi antenna element in a linear four-element array, since such element supports wideband and wide-scan angle operation. A soft condition in the form of corrugations is implemented around the periphery of the array, in order to reduce the edge effects. This technique improved the gain, the sidelobes, and helped to obtain back radiation suppression. Finally, impedance loading was also utilized in the two edge elements of the array to improve the active impedance. The proposed system of the Butler matrix in conjunction with the constructed array can be utilized as a common RF front end in a wideband air interface for a small cell 5G application and beyond as it is capable to simultaneously cover all the commercial bands from 2 to 5 GHz.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2018. Vol. 66, no 12, p. 6851-6861, article id 8485638
Keywords [en]
5G, Butler matrix, edge impedance loading, RF front end, small cell, soft surface, Vivaldi array, wideband, 5G mobile communication systems, Antenna lobes, Base stations, Beamforming, Cost effectiveness, Electric connectors, Microwave antennas, Multilayers, Phase shifters, Small cells, Wide-band
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-247027DOI: 10.1109/TAP.2018.2874494ISI: 000451994900018Scopus ID: 2-s2.0-85054504875OAI: oai:DiVA.org:kth-247027DiVA, id: diva2:1330737
Note

QC 20190626

Available from: 2019-06-26 Created: 2019-06-26 Last updated: 2019-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kolitsidas, ChristosJonsson, B. Lars G.

Search in DiVA

By author/editor
Kolitsidas, ChristosJonsson, B. Lars G.
By organisation
Electromagnetic Engineering
In the same journal
IEEE Transactions on Antennas and Propagation
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf