kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-6017-1774
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.ORCID iD: 0000-0002-3368-9786
Show others and affiliations
2019 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 22, p. 20465-20472Article in journal (Refereed) Published
Abstract [en]

Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized; also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (similar to 76 J g(-1)) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019. Vol. 11, no 22, p. 20465-20472
Keywords [en]
wood, encapsulation, phase-change material, energy storage, biocomposite
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-254507DOI: 10.1021/acsami.9b05525ISI: 000470938500088PubMedID: 31062954Scopus ID: 2-s2.0-85066864916OAI: oai:DiVA.org:kth-254507DiVA, id: diva2:1337441
Funder
Knut and Alice Wallenberg FoundationEU, European Research Council, 742733
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2024-05-21Bibliographically approved
In thesis
1. Transparent Wood Biocomposites for Sustainable Development
Open this publication in new window or tab >>Transparent Wood Biocomposites for Sustainable Development
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sustainable wood nanotechnologies that combine optical transmittance and mechanical performance are interesting for new functionalities utilizing transparency. Wood is a sophisticated bio-based material with a natural hierarchical, anisotropic and porous structure. The wood cellular structure can be functionalized at the micro and nanostructural level for the design of advanced functional materials. In recent years, the development of transparent wood biocomposites derived from delignified wood substrates have gained interest because they combine attractive structural properties with optical functionality. Nanostructural tailoring of transparent wood biocomposites is required to improve optical transmittance, mechanical performance, and to add new functionalities. In this thesis, environmentally friendly material components and green chemical processes have been developed for the fabrication of nanostructurally tailored transparent wood biocomposites.

Mesoporous delignified wood substrates with preserved microstructure and cellulose microfibril alignment in the cell wall are used as reinforcement in transparent wood biocomposites. Chemical functionalization strategies using renewable maleic, itaconic and succinic anhydrides have been explored for molecular and nanostructural tailoring of delignified cell walls. Cyclic anhydride functionalization results in high degree of esterification, reduces moisture content in the wood substrate, improves monomer diffusion within the cell wall, and further enables interface tailoring at the molecular scale with possibility for covalent attachment with polymer matrix. Transparent wood biocomposites were prepared by methyl methacrylate monomer impregnation followed by in situ polymerization within the chemically modified wood substrates. The anhydride-functionalized transparent wood biocomposites have improved wood-polymer interfacial interactions, resulting in improved optical and mechanical properties. Moreover, a bio-based polymer matrix was designed from renewable limonene oxide and acrylic acid for the fabrication of fully bio-based transparent wood biocomposites. The bio-based monomer can diffuse into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. The bio-based transparent wood biocomposites are nanostructured and demonstrate superior optical transmittance, low haze, and excellent mechanical performance.

Nanostructural functionalization using phase-change materials is also demonstrated for the design of transparent wood biocomposites that combine thermal energy storage, tunable optical properties, and load bearing functions. Molecular and nanoscale interactions in transparent wood biocomposites are critical as they contribute to the favorable distribution of the phase-change material across the wood structure, which is a key component in optimizing thermal energy storage capacity. Bio-based design of transparent wood is also explored for thermal energy storage applications. Low environmental impact is achieved by combining the use of bio-based resources with green processing routes. Environmentally friendly transparent wood nanotechnologies can compete with petroleum-based plastics in applications such as load-bearing transparent panel and energy saving.

Abstract [sv]

Hållbara nanoteknologiska trämaterial som kombinerar optisk transparens med mekanisk prestanda är av intresse för nya applikationer där transparens nyttjas. Trä är ett sofistikerat biobaserat material med en naturligt hierarkisk struktur som är anisotrop och porös. Avancerade funktionella material kan framställas genom funktionalisering av träets cellstruktur på mikro- och nanonivå. Utvecklingen av transparenta träbiokompositer, som framställs från delignifierat trä, har under de senaste åren väckt intresse då materialen kombinerar attraktiva strukturella egenskaper med optiska funktioner. Strukturell kontroll på nanonivå är nödvändig för förbättrad optisk transmittans, mekanisk prestanda samt för att tillägga nya egenskaper. I denna avhandling har miljövänliga materialkomponenter och gröna kemiska processer använts för att strukturellt skräddarsy transparenta träkompositer på nanonivå.

Mesoporösa och delignifierade träsubstrat med bevarad mikrostruktur och orientering av cellulosamikrofibriller i cellväggen används som förstärkning i transparenta träkompositer. Strategier för kemisk funktionalisering med förnybara malein-, itakon- och bärnstenssyraanhydrider har undersökts för att skräddarsy delignifierade cellväggar. Funktionalisering med cykliska anhydrider resulterar i hög förestringsgrad som minskar fukthalten i träsubstratet, förbättrar monomerdiffusion inom cellväggarna samt möjliggör ytterligare anpassning av gränsytor för kovalent bindning med polymermatris. Transparenta träkompositer framställdes först genom impregnering med metylmetakrylatmonomer följt av in situ polymerisation i de kemiskt modifierade träsubstraten. Transparenta träbiokompositer framställda från träsubstrat som funktionaliserats med anhydrider uppvisar förbättrade gränsytor mellan trä och polymer, vilket resulterar i förbättrade optiska och mekaniska egenskaper. En biobaserad polymermatris från förnybar limonenoxid och akrylsyra utvecklades sedan för att framställa helt biobaserade transparenta träkompositer. Den biobaserade monomeren kan diffundera in i cellväggen, och polymerfasen är både av överensstämmande brytningsindex med- och kovalent bundet till träsubstratet. De biobaserade transparenta träkompositerna är nanostrukturerade och uppvisar förbättrad optisk transmittans, lägre ljusspridning och utmärkt mekanisk prestanda.

Transparenta träkompositer som kombinerar värmeenergilagring med reversibla optiska egenskaper och mekanisk prestanda har dessutom framställts genom funktionalisering med fasförändringsmaterial på nanonivå. Interaktioner på molekylär- och nanonivå är kritiska i transparenta träkompositer eftersom de påverkar fördelningen av fasförändringsmaterialet i trästrukturen, vilket är essentiellt för optimerad lagringskapacitet av termisk energi. Ett biobaserat alternativ har även utvecklats för lagring av värmeenergi i transparenta träkompositer. Genom att kombinera användningen av biobaserade resurser med gröna förädlingsprocesser kunde miljöpåverkan minskas. Miljövänliga och transparenta nanoteknologiska träkompositer kan konkurrera med petroleumbaserad plast i applikationer som bärande transparenta paneler och inom energibesparing.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 75
Series
TRITA-CBH-FOU ; 2022:4
Keywords
Transparent wood, biocomposite, eco-friendly, nanotechnology, bio-based polymer, green chemistry, functionalization, thermal energy storage, Transparent trä, biokomposit, miljövänligt, nanoteknik, biobaserad polymer, grön kemi, funktionalisering, lagring av värmeenergi
National Category
Materials Engineering Polymer Technologies Wood Science Composite Science and Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-306718 (URN)978-91-8040-112-8 (ISBN)
Public defence
2022-02-11, F3, Lindstedtsvägen 26, Zoom: https://kth-se.zoom.us/j/66395812787, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg FoundationEU, European Research Council, 742733
Note

QC 2022-01-18

Available from: 2022-01-18 Created: 2022-01-10 Last updated: 2024-05-21Bibliographically approved

Open Access in DiVA

fulltext(4183 kB)399 downloads
File information
File name FULLTEXT02.pdfFile size 4183 kBChecksum SHA-512
032515df719396811f8247766dbcd85e209483fe047ecb308c013e0fed7528be6c7d9a7467920838707a36bb05c8d0eed66ac2df8b418c49486c4ee71a07c9f5
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Montanari, CelineLi, YuanyuanChen, HuiYan, MaxBerglund, Lars A.

Search in DiVA

By author/editor
Montanari, CelineLi, YuanyuanChen, HuiYan, MaxBerglund, Lars A.
By organisation
Wallenberg Wood Science CenterFibre- and Polymer TechnologyPhotonics
In the same journal
ACS Applied Materials and Interfaces
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 419 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1459 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf