Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping the sodium intercalation mechanism, electrochemical properties and structural evolution in non-stoichiometric alluaudite Na2+2 delta Fe2-delta(SO4)(3) cathode materials
Uppsala Univ, Dept Phys & Astron, Mat Theory Div, Condensed Matter Theory Grp, Box 530, SE-75121 Uppsala, Sweden. hakraborty, Sudip.
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. Uppsala Univ, Dept Phys & Astron, Mat Theory Div, Condensed Matter Theory Grp, Box 530, SE-75121 Uppsala, Sweden.
2019 (engelsk)Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, nr 29, s. 17446-17455Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the scientific advancement of future cathode materials, alluaudite sodium iron sulfate Na2+2 delta Fe2-delta(SO4)(3) (NxFyS) has emerged as one of the most promising candidates for sustainable sodium-ion batteries due to its high Fe2+/3+ redox potential (3.8 V vs. Na/Na+), low cost, and high rate capability. Usually, this material occurs in a non-stoichiometric form with partial Na+ substitutions on Fe sites, where delta is close to 0.25 (N2.5F1.75S) depending on the synthesis conditions. While many contemporary works have primarily been directed to study this non-stoichiometric compound, our previous theoretical prediction unveiled the possibility to synthesize stoichiometric alluaudite (N2F2S), which is expected to deliver higher specific capacity (similar to 120 mA h g(-1)) as compared to the non-stoichiometric derivatives. This provokes curiosity toward the non-stoichiometric effect on the electrochemical activities and sodium intercalation mechanism in alluaudite materials. In this work, we therefore perform rigorous first-principles calculations to study the structural evolution, electrochemical behavior, and voltage profile of NxFyS with y = 2, 1.75, and 1.5. We reveal the likelihood of two phase transitions after half desodiation process, whereas the probability is reduced with a higher degree of non-stoichiometry, suggesting improvement in the structural reversibility for N2.5F1.75S and N3F1.5S. The prediction of the voltage profiles shows the benefit of non-stoichiometry in enhancing the specific capacity and identifies the structural rearrangement of Fe2O10 dimers as the hidden reason behind the irreversible sharp peak experimentally observed in differential galvanostatic profiles.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2019. Vol. 7, nr 29, s. 17446-17455
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-255726DOI: 10.1039/c9ta03930aISI: 000476913600026Scopus ID: 2-s2.0-85069790441OAI: oai:DiVA.org:kth-255726DiVA, id: diva2:1342686
Merknad

QC 20190814

Tilgjengelig fra: 2019-08-14 Laget: 2019-08-14 Sist oppdatert: 2019-08-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ahuja, Rajeev

Søk i DiVA

Av forfatter/redaktør
Ahuja, Rajeev
Av organisasjonen
I samme tidsskrift
Journal of Materials Chemistry A

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf