Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic multiple sclerosis lesion segmentation using hybrid artificial neural networks
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.ORCID-id: 0000-0002-0442-3524
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.ORCID-id: 0000-0002-7750-1917
2016 (engelsk)Inngår i: MSSEG Challenge Proceedings: Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure, s. 29-36Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Multiple sclerosis (MS) is a demyelinating disease which could cause severe motor and cognitive deterioration. Segmenting MS lesions could be highly beneficial for diagnosing, analyzing and monitoring treatment efficacy. To do so, manual segmentation, performed by experts, is the conventional method in hospitals and clinical environments. Although manual segmentation is accurate, it is time consuming, expensive and might not be reliable. The aim of this work was to propose an automatic method for MS lesion segmentation and evaluate it using brain images available within the MICCAI MS segmentation challenge. The proposed method employs supervised artificial neural network based algorithm, exploiting intensity-based and spatial-based features as the input of the network. This method achieved relatively accurate results with acceptable training and testing time for training datasets.

sted, utgiver, år, opplag, sider
2016. s. 29-36
Emneord [en]
Multiple sclerosis segmentation, artificial neural networks, machine learning, MRI
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-258881OAI: oai:DiVA.org:kth-258881DiVA, id: diva2:1350238
Merknad

QC 20191025

Tilgjengelig fra: 2019-09-11 Laget: 2019-09-11 Sist oppdatert: 2019-10-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Mahbod, AmirrezaWang, ChunliangSmedby, Örjan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf