Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic multi-organ segmentation in non-enhanced CT datasets using hierarchical shape priors
Linköping University, Linköping, Sweden.ORCID-id: 0000-0002-0442-3524
Linköping University, Linköping, Sweden.ORCID-id: 0000-0002-7750-1917
2014 (engelsk)Inngår i: 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), IEEE Computer Society, 2014, Vol. 6977285, s. 3327-3332Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

An automatic multi-organ segmentation method using hierarchical-shape-prior guided level sets is proposed. The hierarchical shape priors are organized according to the anatomical hierarchy of the human body, so that major structures with less population variety are at the top and smaller structures with higher irregularities are linked at a lower level. The segmentation is performed in a top-down fashion, where major structures are first segmented with higher confidence, and their location information is then passed down to the lower level to initialize the segmentation, while boundary information from higher-level structures also provides extra cues to guide the segmentation of the lower-level structures. The proposed method was combined with a novel coherent propagating level set method, which is capable to detect local convergence and skip calculation in those parts, therefore significantly reducing computation time. Preliminary experiment results on a small number of clinical datasets are encouraging; the proposed method yielded a Dice coefficient above 90% for most major organs within a reasonable processing time without any user intervention.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2014. Vol. 6977285, s. 3327-3332
Serie
International Conference on Pattern Recognition, ISSN 1051-4651
Emneord [en]
multi-organ segmentation; shape priors; statistical model; level sets
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-258858DOI: 10.1109/ICPR.2014.574ISI: 000359818003077Scopus ID: 2-s2.0-84902129929ISBN: 9781479952083 (tryckt)OAI: oai:DiVA.org:kth-258858DiVA, id: diva2:1350256
Konferanse
22nd International Conference on Pattern Recognition, ICPR 2014; Stockholm; Sweden; 24 August 2014 through 28 August 2014
Merknad

QC 20190912

Tilgjengelig fra: 2019-09-11 Laget: 2019-09-11 Sist oppdatert: 2019-09-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Smedby, Örjan

Søk i DiVA

Av forfatter/redaktør
Wang, ChunliangSmedby, Örjan

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 2 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf