Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CONTROLLED ASSEMBLY AND FUNCTIONALISATION OF CELLULOSE-BASED MATERIALS
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. (Fiberteknologi)ORCID iD: 0000-0003-1874-2187
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The environmental effects caused by the use of fossil-based resources have intensified and driven society and research towards new materials and processes that utilise renewable resources. Within the development of new materials, wood has been identified as a raw-material from which high performing materials can be derived. One such material is cellulose nanofibrils (CNFs) which are capable of replacing several currently used fossil-based materials. However, for CNFs to exhibit the required material properties they need to be chemically or physically modified. This means that the properties of the CNFs can be specifically adapted to fit the demand in particular areas, for example electrical energy storage. In these applications it is the mechanical properties; the large, easily functionalised surface and ability to be moulded into 3D shapes that make CNFs a highly interesting raw material.

This thesis explores the formation and functionalisation of CNF- and fibre-based materials and their novel use in applications such as energy storage. The wet stability of the materials was achieved by crosslinking and ice templating the fibrils by a novel freezing procedure, which makes it possible to avoid the use of freeze-drying and subsequent crosslinking. Using colloidal probe atomic force microscopy adhesion measurements, hemiacetals were shown to be formed between the aldehyde-containing fibrils when they are brought into molecular contact, for example during ice templating. Hemiacetal crosslinked aerogels have been shaped and functionalised to demonstrate their application as biomimetic structural composites, electrical circuits and electrical cells. In addition, crosslinked, light-weight 3D fibre networks were prepared with á similar chemistry by a self-assembly process of pulp fibres. These networks could be dried under ambient conditions and the materials formed were wet-stable due to the hemiacetal crosslinks formed in the fibre–fibre contacts, which provided the networks with excellent mechanical properties and shape recovery capacity in water.

Finally, using a newly developed polyampholyte and mixing it with CNFs, heterofunctional composite films and aerogels could be prepared. By activating crosslinkable groups in these composite materials, they were able to undergo further water based chemical functionalisation. In this highly dispersed state, the composite could be irreversibly crosslinked by a hydrothermal treatment to create transparent, low solid content hydrogels.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2019. , p. 81
Series
TRITA-CBH-FOU ; 2019:44
National Category
Polymer Technologies Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-259346ISBN: 978-91-7873-295-1 (print)OAI: oai:DiVA.org:kth-259346DiVA, id: diva2:1351035
Public defence
2019-10-11, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 37716-1
Note

QC 2019-09-13

Available from: 2019-09-13 Created: 2019-09-13 Last updated: 2019-10-04Bibliographically approved
List of papers
1. Macro- and mesoporous nanocellulose beads for use in energy storage devices
Open this publication in new window or tab >>Macro- and mesoporous nanocellulose beads for use in energy storage devices
Show others...
2016 (English)In: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 5, p. 246-254Article in journal (Refereed) Published
Abstract [en]

Chemically cross-linked, wet-stable cellulose nanofibril (CNF) aerogel beads were fabricated using a novel procedure. The procedure facilitated controlled production of millimetre-sized CNF aerogel beads without freeze-drying or critical point drying, while still retaining a highly porous structure with low density. The aerogel beads were mechanically robust in the dry state, supporting loads of 1.3 N at 70% compression, even after being soaked in water and re-dried. Furthermore, they displayed both a good stability in water and a remarkably good shape recovery after wet compression. Owing to the stability in water, the entire surface of the highly porous aerogel beads could be successfully functionalized with polyelectrolytes and carboxyl-functionalized single-wall carbon nanotubes (CF-SWCNTs) using the Layer-by-Layer technique, introducing a significant electrical conductivity (1.6 mS/cm) to the aerogel beads. The functionalized, electrically conducting aerogel beads could carry as much as 2 kA/cm(2) and act as electrodes in a supercapacitor displaying a stabilized charge storage capacity of 9.8 F/g after 50 charging-discharging cycles.

Place, publisher, year, edition, pages
Elsevier, 2016
Keywords
Supercapacitor, Layer-by-Layer, Size-reduced aerogel, Cellulose nanofibrils
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-202785 (URN)10.1016/j.apmt.2016.09.008 (DOI)000392950300023 ()2-s2.0-84995564002 (Scopus ID)
Note

QC 20170307

Available from: 2017-03-07 Created: 2017-03-07 Last updated: 2019-11-14Bibliographically approved
2. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels
Open this publication in new window or tab >>On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels
Show others...
2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed) Published
Abstract [en]

The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018
Keywords
Aerogels, Aldehydes, Cellulose, Chemical stability, Crosslinking, Freezing, Nanofibers, Acidic conditions, Ambient conditions, Cellulose nanofibrils (CNFs), Chemical cross-linking, Freezing process, Lower critical, Periodate oxidation, Solvent exchanges, Ice
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-247488 (URN)10.1039/c8ta06319b (DOI)000448413100008 ()2-s2.0-85055128762 (Scopus ID)
Note

QC 20190405

Available from: 2019-04-05 Created: 2019-04-05 Last updated: 2019-09-13Bibliographically approved
3. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils
Open this publication in new window or tab >>Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils
Show others...
2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed) Published
Abstract [en]

Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-245946 (URN)10.1021/acs.biomac.8b01412 (DOI)000458937200016 ()30394086 (PubMedID)2-s2.0-85057560598 (Scopus ID)
Conference
Symposium on Rational Design of Multifunctional Renewable-Resourced Materials held during the ACS National Meeting, AUG 19-23, 2018, Boston, MA
Note

QC 20190312

Available from: 2019-03-12 Created: 2019-03-12 Last updated: 2019-09-13Bibliographically approved
4. Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength
Open this publication in new window or tab >>Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength
2018 (English)In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, no 8, p. 9951-9957Article in journal (Refereed) Published
Abstract [en]

Highly porous materials with low density were developed from chemically modified cellulose fibers using solvent-exchange and air drying. Periodate oxidation was initially performed to introduce aldehydes into the cellulose chain, which were then further oxidized to carboxyl groups by chlorite oxidation. Low-density materials were finally achieved by a second periodate oxidation under which the fibers self-assembled into porous fibrous networks. Following a solvent exchange to acetone, these networks could be air-dried without shrinkage. The properties of the materials were tuned by mechanical mixing with a high intensity mixer for different times prior to the second periodate oxidation, which resulted in porosities between 94.4% and 96.3% (i.e., densities between 54 and 82 kg/m(3)). The compressive strength of the materials was between 400 and 1600 kPa in the dry state and between 20 and 50 kPa in the wet state. It was also observed that in the wet state the fiber networks could be compressed up to 80% while still being able to recover their shape. These networks are highly interesting for use in different types of absorption products, and since they also have a high wet integrity, they can be modified with physical methods for different high-value-added end-use applications.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2018
Keywords
Ambient drying, Cellulose, Chemical modification, Chlorite oxidation, Lightweight material, Periodate oxidation
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-234192 (URN)10.1021/acssuschemeng.8b01165 (DOI)000441475500049 ()2-s2.0-85049192536 (Scopus ID)
Note

QC 20181001

Available from: 2018-10-01 Created: 2018-10-01 Last updated: 2019-09-13Bibliographically approved
5. The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional material
Open this publication in new window or tab >>The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional material
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-249210 (URN)
Note

QC 20190412

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-09-13Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2020-10-11 10:00
Available from 2020-10-11 10:00

Authority records BETA

Erlandsson, Johan

Search in DiVA

By author/editor
Erlandsson, Johan
By organisation
Fibre- and Polymer Technology
Polymer TechnologiesPaper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf